
a l a p a g o s :
a generic distributed parallel

genetic algorithm development platform

Nicolas Kruchten
4th year Engineering Science

(Infrastructure Option)

Last Week

•  Introduction to Galapagos:
– Background
– Motivation
– Capabilities
– What but not how…

Major Points
•  Galapagos is a platform with which we can

develop distributed parallel genetic algorithms

•  Galapagos is very flexible

–  Many (GA-appropriate) problems
–  Many GA types

•  Operators
•  Population structure

–  Many distribution schemes

Today

•  Technical explanation of Galapagos

•  Approach: 3 views of Galapagos’ flexibility
– Problem-domain
– GA types & parallel population structure
– GA distribution architecture

Problem-Domain

•  GAs are optimization tools

•  Need objective function
– Not always real function of real variables

•  Galapagos can be used with a wide
variety of objective functions

Object Oriented

•  Galapagos defines and executes a set of
‘black-box’ steps in a flowchart

•  Internal workings of boxes, and data types
they operate on are up to the developer

•  Galapagos provides templates for building
new data types and GA operators

Initializer

Generator

Assembler

evaluation

evaluation

Convergence

end

yes

no

GA Types:
Galapagos GA Flow Diagram

Migrator

Epoch

yes

no

Initializer

Generator

Assembler

evaluation

evaluation

Convergence

end

yes

no

Initializer

•  picks the initial population

•  default: random, specified min/max

•  other uses: seeding the population

Initializer

Generator

Assembler

evaluation

evaluation

Convergence

end

yes

no

evaluation

•  handled by Galapagos

•  usually handed to LightGrid for
distributed processing

•  can be handled on local machine
(single-computer version)

Initializer

Generator

Assembler

evaluation

evaluation

Convergence

end

yes

no

Generator

•  Creates a generation of children

•  GA usually works with:
•  A Mutator
•  A Recombiner (compare: EP)

each child = mutate(recombine())

(mutate the output of recombination
operation)

Initializer

Generator

Assembler

evaluation

evaluation

Convergence

end

yes

no

evaluation

•  same as above

Initializer

Generator

Assembler

evaluation

evaluation

Convergence

end

yes

no

Assembler

•  Creates a new population, using
an existing population and an
incoming generation

•  GA falls roughly in:
•  Simple (‘canonical’)
•  Crowding (‘steady-state’,
‘incremental’, ‘truncation’)

•  Crowding usually implemented
using a Selector

•  This is where elitism occurs

Initializer

Generator

Assembler

evaluation

evaluation

Convergence

end

yes

no

Convergence

•  Defines some end condition for the
run

•  Usually based on:
•  A real time measure
•  An ‘algorithm time’ measure
•  Some parameter (mean, std
etc.)

Initializer

Generator

Assembler

evaluation

evaluation

Convergence

end

yes

no

end

•  Run is over

•  Whatever post-processing, logging
etc happens here

Migrator

Epoch

yes

no

Epoch

•  Asynchronously evaluated

•  Defines some timeframe:
•  Real time
•  ‘algorithm time’
•  Some parameter (mean, std,
etc.)

Migrator

Epoch

yes

no

Migrator

•  Required for Parallel GA (multiple
populations)

•  On sending side, defines:
•  migrant destination
•  migrant number
•  migrant selection

•  On destination side, defines:
•  replacement policy

•  usually implemented with:
•  Topology
•  Selector
•  Assembler

Supporting Operators
•  Generator:

– Mutator
– Recombiner

•  Assembler:
– Selector

•  Migrator:
– Topology
– Selector
– Assembler (already covered)

Mutator

•  Basic EA staple
•  Input: a chromosome
•  Output: a chromosome
•  Function: performs some mutation
•  Usually implemented using a

GeneMutator, in which case Mutator
selects which genes are mutated,
GeneMutator governs how that occurs

GeneMutator

•  Usually called from a Mutator
•  Input: a gene
•  Output: a gene
•  Function: mutate that gene according to

some rule

Recombiner

•  Input: none
•  Output: a chromosome
•  Function: uses an internal Selector to pick

parents, creates n children according to
some rule

•  If no recombination/crossover occurs, this
is EP, not GA

Selector

•  Shows up everywhere!
•  EA staple
•  Input: selection pool, n
•  Output: n chromosomes
•  Function: selects n chromosomes

according to some rule

Topology

•  Required in Parallel GA
•  Defines migrant destination, number per

destination

•  Defines nature of PGA:
– Coarse-grained/Fine-grained
– Deterministic /Stochastic

Operators
•  Initializer
•  Generator
•  Assembler

•  Convergence
•  Epoch

•  Migrator

•  Mutator
•  GeneMutator

•  Recombiner

•  Selector

•  Topology

Summary

•  Meta-operators and supporting operators
provide a well-defined yet flexible GA base

•  Migrator/Epoch/Topology operators allow
for wide variety of PGA types

Initializer

Generator

Assembler

evaluation

evaluation

Convergence

end

yes

no

evaluation

•  handled by Galapagos

•  usually handed to LightGrid for
distributed processing

•  can be handled on local machine
(single-computer version)

LightGrid explained

•  Clients and Resources

•  Dispatcher

•  Generic: can be used to implement any
distributed application

Master
Process

Slave
Process

Slave
Process

Slave
Process

Slave
Process

Resource Pool

Job Job

Result Result

Dispatcher

Grid Computing

Master

Worker

Worker

Worker

Master

Master

Master

Master / Worker Peered

Worker

Worker

Worker Master

Master

Master

Hybrid: Peered Masters with Worker Pool

High-Level Process Diagram

Controller Dispatcher

Container

Container

Evaluator

Evaluator

Evaluator

Process view

•  4 major process types:
– Container (LightGrid Clients)
– Evaluator (LightGrid Resources)
– Controller
– LightGrid Dispatcher

•  Each process holds more than one thread
of execution (sub-process)

Process View II

•  Containers (LightGrid Clients):
– Contain and manage populations
–  Interface between populations and evaluators
–  Interface between individual populations

•  Evaluators (LightGrid Resources):
– Compute the fitness value for a given

chromosome

Process View III

•  Controller:
– ‘where the user sits’
–  Input/Output, control process
–  Issues start/stop/reset messages

•  LightGrid Dispatcher:
– Dispatches jobs from Clients to Resources

and passes the results back

High-Level Process Diagram

Controller Dispatcher

Container

Container

Evaluator

Evaluator

Evaluator

Controller Process Diagram

User Input
Listener

Container
Listener

Convergence
Checker Population

Copies

Controller

Containers

Container Process Diagram

Containers

User Input
Listener

Migrant
Listener

Epoch
Checker Populations

Container

Controllers

Dispatchers Dispatcher
Listener

Controller
Listener

Sent Jobs

Dispatcher Process Diagram

User Input
Listener

Dispatcher
Loop

Free
Resources

Dispatcher

Containers

Evaluators Resource
Listener

Controller
Listener

Sent Jobs

Unsent Jobs

Evaluator Process Diagram

User Input
Listener

Dispatcher
Listener

Fitness
Evaluator Job

Evaluator

Dispatchers

Physical View

•  Given N computers, M populations, what
goes where?
– Nature of fitness
– Nature of operators
– Nature of computers
– Nature of network

•  Galapagos is flexible enough to be
deployed almost anywhere

Physical Mappings

Controller Dispatcher

Container

Container

Evaluator

Evaluator

Evaluator

Physical Mappings

Controller Dispatcher

Container

Container

Evaluator

Evaluator

Evaluator

Physical Mappings

Controller Dispatcher

Container

Container

Evaluator

Evaluator

Evaluator

Physical Mappings

Controller

Dispatcher

Container

Container

Evaluator

Evaluator

Evaluator

Dispatcher

Summary

•  Distributed PGA design is very complex:
– Problem-domain specifics
– GA type & population structure design
– Available hardware

•  Galapagos doesn’t provide easy answers
but does provide a flexible common basis
to work from

nicolas@kruchten.com

this presentation is available at:
http://nicolas.kruchten.com/

Questions?

a l a p a g o s

a l a p a g o s :
a generic distributed parallel

genetic algorithm development platform

Nicolas Kruchten
4th year Engineering Science

(Infrastructure Option)

