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Last Week 

•  Introduction to Galapagos: 
– Background 
– Motivation 
– Capabilities 
– What but not how… 



Major Points 
•  Galapagos is a platform with which we can 

develop distributed parallel genetic algorithms 
 
•  Galapagos is very flexible 

–  Many (GA-appropriate) problems 
–  Many GA types 

•  Operators 
•  Population structure 

–  Many distribution schemes 



Today 

•  Technical explanation of Galapagos 

•  Approach: 3 views of Galapagos’ flexibility 
– Problem-domain 
– GA types & parallel population structure 
– GA distribution architecture 



Problem-Domain 

•  GAs are optimization tools 

•  Need objective function 
– Not always real function of real variables 

•  Galapagos can be used with a wide 
variety of objective functions 



Object Oriented 

•  Galapagos defines and executes a set of 
‘black-box’ steps in a flowchart 

•  Internal workings of boxes, and data types 
they operate on are up to the developer 

•  Galapagos provides templates for building 
new data types and GA operators 
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Initializer 
 
•  picks the initial population 

•  default: random, specified min/max 

•  other uses: seeding the population 
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evaluation 
 
•  handled by Galapagos 

•  usually handed to LightGrid for  
distributed processing 

•  can be handled on local machine 
(single-computer version) 
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Generator 
 
•  Creates a generation of children 

•  GA usually works with: 
•  A Mutator 
•  A Recombiner (compare: EP) 

 
 
each child = mutate(recombine()) 
 
(mutate the output of recombination 
operation) 
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evaluation 
 
•  same as above 
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Assembler 
 
•  Creates a new population, using 
an existing population and an 
incoming generation 

•  GA falls roughly in: 
•  Simple (‘canonical’) 
•  Crowding (‘steady-state’, 
‘incremental’, ‘truncation’) 

•  Crowding usually implemented 
using a Selector 

•  This is where elitism occurs 
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Convergence 
 
•  Defines some end condition for the 
run 

•  Usually based on: 
•  A real time measure 
•  An ‘algorithm time’ measure 
•  Some parameter (mean, std 
etc.) 
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end 
 
•  Run is over 

•  Whatever post-processing, logging 
etc happens here 
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Epoch 
 
•  Asynchronously evaluated 

•  Defines some timeframe: 
•  Real time 
•  ‘algorithm time’ 
•  Some parameter (mean, std, 
etc.) 
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Migrator 
 
•  Required for Parallel GA (multiple 
populations) 

•  On sending side, defines: 
•  migrant destination 
•  migrant number 
•  migrant selection 

•  On destination side, defines: 
•  replacement policy 

•  usually implemented with: 
•  Topology 
•  Selector 
•  Assembler 



Supporting Operators 
•  Generator: 

– Mutator 
– Recombiner 

•  Assembler: 
– Selector 

•  Migrator: 
– Topology 
– Selector 
– Assembler (already covered) 



Mutator 

•  Basic EA staple 
•  Input: a chromosome 
•  Output: a chromosome 
•  Function: performs some mutation 
•  Usually implemented using a 

GeneMutator, in which case Mutator 
selects which genes are mutated, 
GeneMutator governs how that occurs 



GeneMutator 

•  Usually called from a Mutator 
•  Input: a gene 
•  Output: a gene 
•  Function: mutate that gene according to 

some rule 



Recombiner 

•  Input: none 
•  Output: a chromosome 
•  Function: uses an internal Selector to pick 

parents, creates n children according to 
some rule 

•  If no recombination/crossover occurs, this 
is EP, not GA 



Selector 

•  Shows up everywhere! 
•  EA staple 
•  Input: selection pool, n 
•  Output: n chromosomes 
•  Function: selects n chromosomes 

according to some rule 



Topology 

•  Required in Parallel GA 
•  Defines migrant destination, number per 

destination 

•  Defines nature of PGA: 
– Coarse-grained/Fine-grained 
– Deterministic /Stochastic 



Operators 
•  Initializer 
•  Generator 
•  Assembler 

•  Convergence 
•  Epoch 

•  Migrator 

•  Mutator 
•  GeneMutator 

•  Recombiner 

•  Selector 

•  Topology 



Summary 

•  Meta-operators and supporting operators 
provide a well-defined yet flexible GA base 

•  Migrator/Epoch/Topology operators allow 
for wide variety of PGA types 
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evaluation 
 
•  handled by Galapagos 

•  usually handed to LightGrid for  
distributed processing 

•  can be handled on local machine 
(single-computer version) 



LightGrid explained 

•  Clients and Resources 

•  Dispatcher 

•  Generic: can be used to implement any 
distributed application 
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Process view 

•  4 major process types: 
– Container (LightGrid Clients) 
– Evaluator (LightGrid Resources)  
– Controller 
– LightGrid Dispatcher 

•  Each process holds more than one thread 
of execution (sub-process) 



Process View II 

•  Containers (LightGrid Clients): 
– Contain and manage populations 
–  Interface between populations and evaluators 
–  Interface between individual populations 

•  Evaluators (LightGrid Resources): 
– Compute the fitness value for a given 

chromosome 



Process View III 

•  Controller: 
– ‘where the user sits’ 
–  Input/Output, control process 
–  Issues start/stop/reset messages 

•  LightGrid Dispatcher: 
– Dispatches jobs from Clients to Resources 

and passes the results back 
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Container Process Diagram 
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Dispatcher Process Diagram 
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Physical View 

•  Given N computers, M populations, what 
goes where? 
– Nature of fitness 
– Nature of operators 
– Nature of computers 
– Nature of network 

•  Galapagos is flexible enough to be 
deployed almost anywhere 
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Summary 

•  Distributed PGA design is very complex: 
– Problem-domain specifics 
– GA type & population structure design 
– Available hardware 

•  Galapagos doesn’t provide easy answers 
but does provide a flexible common basis 
to work from 
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this presentation is available at: 
http://nicolas.kruchten.com/ 
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