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ABSTRACT

Numerous Intelligent Transportation Systems (ITS) problems can be formulated as optimization 
problems. One promising approach to solving such optimization problems is genetic algorithms. 
Due the fact that most transportation optimization problems are large in size (i.e. have many 
variables) and computationally very demanding, their solution can be very or even prohibitively 
slow. This paper introduces our new experimental development framework for distributed 
parallel genetic algorithms, which we call Galapagos. The main motivation behind the 
development of Galapagos is to speed up the convergence to solution of large scale ITS problems 
to usable, practical timescales. 

In highlighting the effective usage of genetic algorithms to solve difficult problems in ITS, we 
describe advanced genetic algorithms using parallel population structures and distributed 
computation, then describe combinations of these approaches and highlight key issues in terms 
of design and implementation, as well as benefits in terms of speed gains. Galapagos components 
are then described, and lastly a case study on calibrating an incident detection algorithm is 
presented to give one illustration of how Galapagos allows for very rapid convergence. The case 
study covers a system previously developed in-house called Genetic Adaptive Incident Detection 
(GAID), which uses a single-population single-computer genetic algorithm to optimize sixteen 
parameters of a probabilistic neural network classifier. It is shown that recasting GAID as a 
Galapagos application significantly and predictably sped up the convergence of this algorithm, 
suggesting that the same could be done for a variety of GAs in the ITS field.



INTRODUCTION

Many Intelligent Transportation Systems (ITS) problems can be formulated as optimization 
problems, that is, finding the vector x such that a given function z(x) is minimized. These 
optimization problems either have large numbers of variables or are simply intractable by 
traditional optimization techniques such as gradient-based algorithms, which tend to find local 
optima, rather than converging to the desired global optimum, when they are usable at all. Some 
functions needing to be optimized are non-differentiable, ruling out traditional search methods. A 
representative example of this would be model-parameter calibration by minimization of an error 
term expressed as a function of these parameters. In this case, x is the vector of parameters, and z
(x) is the error term: calibration of the system requires the minimization of this error term. 
Examples of such systems can be traffic simulation models, neural network classifiers and 
origin-destination-estimators, to name a few (1, 2).

Most recently, evolutionary algorithms, specifically genetic algorithms (GA) have 
emerged as promising solution methods which are not only able to tackle such difficult problems, 
but also able to find global optima or at least better local optima (3). Genetic algorithms, 
however, can be impractically slow. For example, GENOSIM, a genetic algorithm based 
optimizer for large scale microscopic traffic simulation models that was developed in-house at 
the University of Toronto, takes one full week to optimize a 200 km2 simulation network on a 
typical Pentium 3 1.0 GHz PC. Such calibration is to be repeated quite often: every time a 
significant number of changes are introduced to the network. Another example is the problem of 
dynamic origin destination estimation, which plays a central role in our research. This problem 
can be cast as an optimization problem with a very large number of variables for a not-too-large 
transportation network, but must be solved within a minute or two, which is impossible on any 
single desktop computer.

Thus, we sought an expedient approach to the optimization of such demanding ITS 
applications. In this paper we introduce our new experimental development framework for 
distributed and parallel genetic algorithms, which we call Galapagos. The main motivation 
behind the development of Galapagos is to speed up the convergence to solution of large scale 
ITS problems to usable, practical timescales. 

The first section of this paper is a concise introduction to genetic algorithms. The next 
two sections treat GA parallelization and distributed computing separately, starting with 
parallelization. The application of distributed computing to GAs and parallel GAs is described 
next. The last two sections describe Galapagos, a new software platform developed to study and 
use distributed and parallel genetic algorithms in the context of ITS problems specifically. An 
application of Galapagos to the calibration of an incident detection algorithm is presented 

GENETIC ALGORITHMS

Genetic Algorithms (GAs) are stochastic search methods based on the principles and 
mechanisms of natural selection and ‘survival of the fittest’ from natural evolution. Since their 
introduction in the 1970s, in Holland’s study of adaptation in artificial and natural systems (3), 



GAs have become popular optimization methods. By simulating natural evolutionary processes, 
a GA can search the problem’s solution space thoroughly and multi-directionally by maintaining 
a population of potential solutions and encouraging exchange between these directions. The 
population undergoes a simulated evolution: at each generation the relatively “good” solutions 
reproduce, while the relatively “bad” solutions die. To distinguish between different solutions, an 
objective function is used for evaluation that plays the role of environment.

Mathematically, a GA emulates the concepts of competition and selection in populations 
of living creatures to generate a good solution vector, x, to the problem of minimizing a given 
function, z(x). Each solution is treated as an individual or chromosome, the components of which 
are genes. Each chromosome has a fitness, usually equal to -z(x) in a minimization context. A 
variety of genetic operators (selection, mutation, crossover) are repeatedly applied to an initial 
population of such individuals, which can be randomly generated or ‘seeded’, in order to find 
fitter and fitter individuals, that is, solutions x with lower and lower values of z(x). 

FIGURE 1 Generalized genetic algorithm flowchart.

There are many different ways to implement a GA for a given problem, with variations in 
the representation of the solution and in the choice of genetic operators. Each chromosome 
encodes a particular solution to the problem at hand, usually a vector of numbers. These numbers 
can be converted into one long binary string or can be used as real values. The various genetic 
operators chosen for each step in Figure 1 also define the type of genetic algorithm. At each 
iteration of the GA, new chromosomes are generated from the current population P(t), populating 
the next generation, P’(t), by mutating a single parent and/or by combining genes or portions of 
the solution from two or more parents via a process known as mating, or crossover. 

Which chromosomes are to be used to produce the new generation depends on the 
operator chosen, as does the manner in which each generation is integrated into the population. 
For instance, in GAs implementing elitism, each new batch of chromosomes is compared against 
their parents and the best members stay in the population, these are known as crowding GAs. 
Another approach is to have all of the new generation of chromosomes enter the population, 
completely replacing the old one. The number of chromosomes in the population and in each 
generation is also a variable that will impact the GA’s operation. One notable configuration is the 
steady-state GA, where after each generation is evaluated, only one chromosome is generated 
and then inserted into the population only if it displaces another chromosome. Certain GAs also 
include adaptive operators and parameters, where, for example, the rate at which mutation occurs 
will change as the chromosomes get fitter. A wide variety of parameters and operators have been 
proposed and analyzed to varying degrees in the literature (4) while still fitting into the 
generalized flowchart above, but it is important to note that no single configuration has proven to 
work best in all cases. The choice of operators and parameters is more of an intuitive activity 
than a science, but guidelines and heuristics have been developed (5). 



PARALLEL GENETIC ALGORITHMS

More sophisticated GA variants, parallel genetic algorithms (PGA), which have multiple 
interacting sub-populations (or demes), have been used to generate good solutions more 
efficiently. Single-deme GAs are also known as panmictic GAs, because every chromosome in 
the population can mate with every other chromosome in the same population, which is not true 
of PGAs, where mating is restricted to chromosomes within the same deme. Panmictic genetic 
algorithms can generate good solutions to optimization problems, but are not entirely immune to 
entrapment in local optima. By using multiple interacting sub-populations, GAs have not only 
been shown to be less prone to getting trapped in local minima, as multiple areas of the search 
space are explored independently, but also to converge to a solution more rapidly (6).

A PGA, like a panmictic GA, mimics the situations found in nature: semi-isolated islands 
where groups of individuals can evolve independently, with sporadic migrations (this is exactly 
the type of situation Darwin went to the Galapagos Islands to study in bird populations). On any 
given island, the population can begin to lose diversity, or become trapped in a local minimum, 
but this can be alleviated by the insertion of new genetic material from another island. In this 
way, the global population maintains its genetic diversity and each deme (island) can explore a 
different area of the solution space, with periodic input of genetic material from other demes.

Each deme in a basic PGA is essentially a separate GA in its own right. The various 
demes interact through a process known as migration, where some chromosomes are periodically  
sent or copied into another population. This period is called the epoch. There are various ways to 
define the duration of an epoch, the selection of migrants, whether they are copied or moved, and 
which chromosomes of the destination deme they replace. Another, very important feature of 
PGAs is the topography used to link the demes.

The topography defines which demes send migrants to which other demes. In a fully 
connected topography, every path is possible, but this is often not the optimal configuration. 
Various topographies have been proposed and studied, but two major classes are important to 
note: fine-grained topographies, also known as diffusion (5, 6, 7) and coarse-grained 
topographies, also known as cellular GAs. Granularity refers to the ratio of computation time to 
communication time.

In a coarse-grained PGA, there are usually a few, highly connected large demes and the 
migration rate is low. This low migration rate means that more time is spent computing values 
and applying genetic operators than migrating chromosomes. In fine-grained PGAs, there are 
usually a large number of loosely connected, small demes with a high migration rate. The choice 
of topography for a given problem is beyond the scope of this paper, but has been explored in the 
literature (5, 6, 7).

FIGURE 2 Possible PGA topographies: (a) fine-grained and (b) coarse-grained.

One major drawback common to all GAs, however, is that they often require hundreds or 
thousands of function evaluations: for every x, z(x) needs to be computed, which can be very 
time-consuming, especially in model-parameter calibration problems, where evaluating the 
objective function can amount to running a whole simulation.



DISTRIBUTED COMPUTING

When faced with an excessively computationally intensive problem, the usual solution is to use a 
faster computer (i.e. with a faster processor). More recently, however, affordable computers with 
multiple processors, cheap computer clusters and ‘grid computing’ (8) have also emerged as 
effective ways of dealing with computationally demanding tasks and together they are known as 
distributed, or parallel, computing. Each of these systems includes more than one processor, 
either in the same machine or distributed over a network.

A processor is inherently sequential; it cannot execute two programs or processes 
simultaneously. This is often emulated by multiplexing, however, with each process being 
allowed to run in turn for a short amount of time, giving the impression of simultaneity (pseudo-
parallelism). Using more than one processor means that more than one process or more than one 
part of the same process can execute truly simultaneously with no loss in speed. Multi-processor 
machines have been dropping in cost since their inception and consumers can now readily obtain 
very powerful dual-processor machines at an accessible price. Computer clusters are groups of 
separate computers, with single or multiple processors, linked together and specially 
programmed to work cooperatively to solve problems. The concept of ‘grid computing’ is based 
on the idea of having a large, fluid pool of available computing resources, counted in the 
hundreds or thousands of computers that can be harnessed on demand by a resource-hungry 
process. 

One example of this is the very successful SETI@Home project (9), in which members of 
the public can download software that runs while their computer would otherwise be idle. Each 
computer processes blocks of radio-telescope data to help in the search for extra-terrestrial 
intelligence (SETI). Grid components can be added to or removed from the pool as appropriate 
and computation continues. A simple way of dealing with this sort of system is to have one 
central dispatcher which continually gathers jobs from master processes, distributes them among 
the available slave processes in the pool, gathers the results of the jobs’ execution and returns 
them to the masters. In this fashion, the dispatcher acts as an abstraction layer between the 
masters and the slaves: there can be as many of each as needed or available, and neither must 
deal directly with the other. 

FIGURE 3 Simple grid-computing architecture.

Note an important distinction between the ‘parallel’ in PGA and what is described above 
and known as ‘parallel computing’. Parallel computing distributes the computation over multiple 
processors, all executing simultaneously (i.e. in parallel); whereas, the ‘parallel’ in PGA usually 
refers to the structure of the population. A PGA can execute sequentially on a single processor, 
and the parallelism in the evolution of the demes is simulated. By convention in this research, we 
use the term ‘distributed’ instead of ‘parallel’ when referring to computation, and use ‘parallel’ 
only when referring to the GA’s population structure.

Not all problems can be effectively distributed, and a good measure of this is the fraction 
of the problem (in terms of execution time) which can be parallelized in time, as the portions of 



the algorithm which must run serially cannot be parallelized. In most GAs, the parallelizable step  
is the most time-consuming one: the evaluation of the chromosomes. Thus there is a large 
enough distributable fraction that GAs are known to be ‘embarrassingly parallelizable’.

In the distribution of computational tasks, the following merit consideration:
• Speedup: the ratio of execution speed of n processors versus 1 processor. (The ideal result in 

distributed computing is linear speedup: 2 processors execute in half the time, 3 in a third and 
so on.)

• Efficiency: the fraction of linear speedup achieved.
• Scalability: how speedup changes with n.
• Robustness: how well the system recovers from errors (e.g. processors crashing mid-

computation, etc.)
• Adaptability: how well the system can integrate heterogeneous resources, that is, processors 

of different speed and memory characteristics or network connection qualities.
• Transferability: how easy is it to run the system in a totally different environment (related to 

adaptability).
The possibility of super-linear speedup (i.e. efficiencies higher than 1) is a controversial 

issue. Common-sense suggests that any task that can be parallelized can be run serially as, if not 
more, efficiently due to parallelization costs but some have suggested various justifications for 
the existence of super-linear speedup, including hidden costs in serial computing (10). Great care 
must be taken in evaluating speedup in various distributed applications, as various factors could 
lead to mistakenly observing super-linear speedup. Speedup is also a difficult measure in 
distributed systems with heterogeneous processors, and other measures may be more appropriate 
in these contexts (6).

Scalability, robustness and adaptability are important to varying degrees, depending on the 
application. If the system is to be deployed on a particular, well-known homogeneous system 
with a fixed number of identical processors, as in the case of a given multi-processor computer, 
then scaling, flexibility and transferability are less important. If, however, the system is to be 
used on a variety of networks, where processors are prone to crashing or the number or capacity 
of processors is known to be variable (e.g., in a grid), these issues take on more importance. 

COMBINING DISTRIBUTED COMPUTING AND GENETIC ALGORITHMS

Distributed computing can be used with GAs in a variety of ways, in order to take advantage of 
problem-specific properties or the available hardware. While any GA, including PGAs, can be 
implemented and run on a single processor, they are easy to distribute and this can greatly speed 
up convergence. The function evaluation step of a GA (see figure 1) is inherently easy to 
distribute; many such evaluations are required and they do not depend on one another, so they 
can be executed at the same time on different processors. For a panmictic GA, distribution takes 
the form of a master/slave architecture, where all of the genetic operations happen within the 
master process and all of the function evaluations occur within the slave processes. This type of 
architecture is a canonical application of grid computing as described above.

PGAs can be very effectively distributed, with one processor managing each deme. In 
this case, there are no masters or slaves and the processors are known as peers. The problems of 



how to structure a GA’s population and how to distribute the computational load are thus not 
unrelated: the available configuration of computer and network hardware can impact the choice 
of GA structure (PGA vs. panmictic, fine-grained vs. coarse-grained, etc) as can the nature of the 
problem. If the definition of granularity seems out of place when discussing a PGA’s population 
structure, it is because this term comes from the distributed computing field, where 
communication time between processors is an important dimension to consider when designing 
systems. If the cost of a single evaluation a – its duration in time – is a tenth of the cost of 
communication to send the results somewhere, then it might be more efficient to perform 20 to 
30 evaluations before sending any data, if possible. With this in mind, it becomes clear what 
types of hardware configurations or problems are well suited for coarse or fine-grained 
distribution PGA architectures. When the cost of computation of one work-unit is higher than the 
cost of communication, a finer-grained architecture might be appropriate. When communication 
costs are comparatively high, it makes more sense to use a coarser-grained distribution scheme.

Beyond the basic distributed PGA architecture, more complex forms are possible. Each 
deme in a PGA is essentially a GA, and could in fact be another PGA with a different granularity 
or a distributed panmictic GA. Demes can also be substantially different from each other in a 
given PGA. PGAs where demes are not identical (i.e. different operators, parameters or 
population structure) are known as heterogeneous PGAs. Super-linear speedup has been reported 
for both homogeneous and heterogeneous PGAs, but as noted, such results are controversial (6).

GA design is mostly concerned with operators and parameters while PGA design 
addresses migration and topography. Distributed computing is a field in its own right, as it is 
possible (but often much harder) to distribute other algorithms than GAs. The integrated design 
of distributed PGAs, however, incorporates all of the above challenges as well as that of mapping 
computational tasks to specific hardware: the end result must be an efficient GA whose 
operators, parameters and population architecture are well-suited to both the problem at hand and 
the hardware and network available.

GALAPAGOS AND LIGHTGRID

We have designed and built Galapagos and LightGrid to implement distributed PGAs primarily 
for ITS applications. Galapagos is a generic distributed PGA development platform, built on top 
of a lightweight, generic grid-computing platform we name LightGrid (see Fig. 4), both of which 
were concurrently developed at the University of Toronto ITS Centre. Galapagos makes it easy 
to design, implement and use any of the distributed and parallel GA configurations described in 
this paper, tailored to the problem and available hardware.

FIGURE 4 Layered architecture of LightGrid and Galapagos.

This layered approach to software development allows replacement of any of the layers 
by other software that performs the same function. For example, we could replace the LightGrid 
layer by a more heavy-duty grid-computing engine, or Galapagos can run in a ‘single-computer’ 
mode, bypassing the LightGrid layer altogether. The Galapagos and LightGrid components can 



also each be upgraded independently of the other, while maintaining functionality of older 
applications.

The LightGrid software consists of a simple master/slave model mediated by a job-
dispatcher process. A LightGrid master process assigns a job to the dispatcher, which queues it 
for processing by a LightGrid slave process. This system is a ‘light-weight’ grid-computing 
platform as it is intended for controlled use in an academic environment. Using LightGrid, a 
variety of non-GA distributed applications can also be easily developed.

Galapagos extends the LightGrid master and slave processes by adding generic GA 
capability. A Galapagos slave process essentially is an objective function evaluator, while a 
Galapagos master manages a given deme or set of demes. Galapagos is a generic system because 
it is not problem-specific: it provides program building blocks with which to implement any GA 
in any configuration. All that is needed to run any given GA configuration is the provision by the 
developer of 5 modules:
• a selector: this module defines the parent-selection step in a GA iteration as well as the rules 

governing which of the new chromosomes enter the population
• a breeder: this module defines the type of crossover used in a GA iteration
• a mutator: this module defines the rules for gene mutation
• a migrator: this module defines PGA topography, and migration selection rules
• an evaluator: this module is deployed as part of the slave process and defines the objective 

function. This module can invoke other third-party software to perform specific computation 
(for instance, can invoke a traffic simulator to run a network under certain control 
configuration).

FIGURE 5 Galapagos flowchart illustrating usage of modules.

This highly modular system was implemented according to the principles of object-
oriented (OO) programming with the Java programming language. OO programming embodies 
the idea that each piece of data in a program is an object, which has both associated attributes 
(variables) and operations (functions or procedures) (11). This approach leads to a clear 
encapsulation of data into re-usable and understandable software components. Java was designed 
specifically for OO programming and is well suited to this sort of application. As well, Java 
software is portable; it can run on almost every operating system in existence, meaning that the 
software developed is adaptable and transferable to computers running a variety of operating 
systems such as Windows, Linux, and other UNIX variants.

Galapagos allows the GA developer to specify any number of populations, using any GA 
operator, in any deme topography, distributed over separate processors in a variety of ways. A 
library of selector, breeder, migrator and mutator modules is under development, allowing a 
developer to simply pick and choose operators and parameters, but the system is open to 
extension (i.e. anyone can write a new operator module and use it). The evaluator module defines 
the problem itself: the objective function. The evaluation of the objective function can be written 
in Java, but it is also possible for this module to invoke third-party programs; for example, if the 
problem is model-parameter-calibration for a given software package, the evaluator can run this 



software package with a given set of parameters (the chromosome x) and score the output in Java 
according to some scheme (the objective function z(x)).

GALAPAGOS IN ACTION ON INCIDENT DETECTION

Genetic algorithms have been used in the past to perform automated incident detection by 
calibrating an artificial neural-network classifier (2). We used Galapagos to distribute and 
parallelize such a system, Genetic Adaptive Incident Detection (GAID). The GAID system 
comprises of a standard genetic algorithm whose 16-gene chromosomes represent the 16 
smoothing parameters for a probabilistic neural-network (PNN) with 16 traffic measurements. 
The objective function consists of ‘scoring’ the PNN’s ability to correctly classify incidents and 
non-incidents. This 16-dimensional function is difficult to differentiate and standard optimization 
techniques are not adequate to optimize the objective function. Further details about GAID can 
be found in (2), which does not specify the exact operators or parameters to be used in 
implementing the system. The implementation of GAID used in this research used the following 
operators and parameters, for reference: a single population of 50 chromosomes, generations of 
50 chromosomes each, random selection of 2 parents, discrete recombination crossover, worst 
bias replacement crowding and adaptive mutation rate linearly varying with the fitness range in 
the population.

The hardware available to do this consists of a large number of moderately powerful 
single-processor desktop machines: 50 computers, running at 1.4 GHz and using the Linux 
operating system which are a part of the University of Toronto’s Engineering Computing Facility 
(ECF) public computer labs. These machines are linked together into a standard megabit 
Ethernet network switch where every computer can easily communicate with every other one. 
The Galapagos slaves were run as background processes on these publicly accessible machines 
while normal usage of these computers by engineering students continued undisturbed.

GAID was successfully distributed under a panmictic model across ECF using 
Galapagos. The computational load was distributed across 50 computers with no loss in solution 
quality compared to the single-computer version of GAID. The grid-computing nature of the 
LightGrid engine also proved to resist well to large changes in slave performance or instances 
where slave machines crashed or stopped returning results. 

The speedup experienced is somewhat difficult to quantify for a few reasons. First of all, 
GAs, being stochastic processes, can yield a wide range of convergence times and, if they do not 
converge to the global optimum, can converge to a wide variety of local optima, depending on 
the function. Second, the tests were run on a variety of machines, under a variety of load 
conditions (i.e. some machines were being used concurrently by students, reducing the amount of 
processing power available to the Galapagos slave process). Third, speedup involves comparing 
the execution time of the whole system to that of one computer, and the execution speeds of 
individual computers varied over time and with respect to each other. Finally, the relationships 
between the number of slaves available, the distribution of their processing power and the 
number of chromosomes per generation affect the execution speed of the whole system in a 
complex manner (which is modeled below), as can the job-dispatching policy employed by the 



dispatcher (i.e. in what order the jobs are assigned and to which slave), but while that is beyond 
the scope of this paper, Galapagos is an ideal platform for studying these relationships.
 The time to convergence can be estimated with the following reasoning: the distribution 
of GAID using Galapagos did not modify the panmictic algorithm, it just distributed the 
parallelizable step, so GAID on one or many computers should converge in the same number of 
generations, empirically found to be around 23 with the set of operators and parameters used. 
The problem, then, is estimating the amount of time a set of computer will take to process a 
single generation, which can be lower-bounded with the following equation:

where:
• tgen = the computation time for one generation
• s = the number of slave processes
• g = the number of chromosomes per generation
• vi(x) = the ‘instantaneous computation speed’ in terms of ‘evaluations per time’ of slave i at 

time x
• q = the granularity (the ratio of evaluation cost to communication cost)
The right-hand side of the equality is the number of evaluations completed at time t, thus when 
this is equal to g, the generation has been evaluated, assuming that the fastest slaves always get 
assigned jobs first, which is a non-trivial task for the dispatcher, as it would involve predicting vi

(x). This model is quite complex, as it incorporates the variation over time of a given slave’s 
computational power. Taking vi to be constant (the inverse of the costs of evaluation plus 
communication), we get:

which is much more practical, given that it is unlikely that we will ever have access to vi(x). The 
floor function is used in both of these because we cannot say that having two half-evaluated 
chromosomes is equivalent to one fully-evaluated one, which is the essence of the problem of 
dispatching policies. This equation also gives us an upper bound on the speedup and efficiency 
we can expect on the distributable portion of a GA, which comprises the bulk of the algorithm’s 
computational load, given that the selection/mating steps in the algorithm execute in an almost 
negligible time compared to the evaluation of a chromosome.

The 50 computers available to us varied in speed but all took around 4 seconds per 
evaluation (including communication cost, which was negligible), and the following graphs 
show empirically observed evaluation time for a generation, speedup and efficiency of the 
system as compared to an ideal system comprised of identical machines that can compute and 
communicate the results of every job in 4 seconds and to the ideal linear speedup case. The 
speedup reported is with respect to the speed of the single-computer data point. The observed 



and predicted values are extremely close, and the predicted values correctly lower-bound the 
evaluation time and upper-bound the speedup and efficiency. 

FIGURE 6: Generation evaluation time of distributed GAID using Galapagos.

FIGURE 7: Speedup of distributed GAID using Galapagos.

FIGURE 8: Efficiency of distributed GAID using Galapagos.

Note that in all three graphs, the observed and predicted behaviours both approach ideal 
linear speedup when g/s is close to an integer value (i.e. at s = 5, 6-7, 10, 12-13, 25 etc) and that 
the marginal gains in evaluation speed are almost zero in between these points. This is due to the 
fact that when, 48 machines are available, two of them must evaluate two jobs in order to make 
50, while the other 46 sit idle, reducing efficiency. This scalability behaviour has important 
implications when designing distributed panmictic GA systems, as the generation size g is not 
always a variable that can be set to arbitrary values. Some experiments were done involving an 
asynchronous system with a generation size of 1, which displayed qualitatively good scalability 
and adaptability, but overall less speedup. The details of that system are outside the scope of this 
paper.

In principle, similar speedups and efficiencies could easily be obtained with Galapagos 
for GAs targeting other transportation problems, using already-available under-used hardware in 
existing networks (like the ECF computers), essentially allowing access to super-computer 
processing power with no additional outlay of funds. 
 GAID was also successfully implemented as a PGA using Galapagos as a proof-of-
concept, but no rigorous analysis of its performance was performed beyond noting that it did not 
perform any worse than the panmictic version.

CONCLUSIONS

Galapagos has already successfully been used to drastically lower the computation time of GAs 
applied to difficult transportation problems and further applications are in development. It will be 
used in the near future to implement various new GA projects at the University of Toronto ITS 
Centre and can also be used to re-implement existing GAs as distributed GAs. Standard single-
computer, single-population genetic algorithms can take a long time to generate good solutions 
to demanding optimization problems in ITS. However, parallelization of the GA’s population 
structure and the distribution of computational load are very effective and easily applied ways to 
speed up the solution of challenging optimization problems. The Galapagos platform is a 
flexible, easy-to-use and easy-to-deploy distributed PGA software package and is very promising 
in terms of opening up new avenues of research in transportation by bringing within reach the 
possibility of very rapidly getting good solutions to previously intractable transportation 
problems.
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FIGURE 1 Generalized genetic algorithm flowchart.



FIGURE 2 Possible PGA topographies: (a) fine-grained and (b) coarse-grained.



FIGURE 3 Simple grid-computing architecture.



FIGURE 4 Layered architecture of LightGrid and Galapagos.



FIGURE 5 Galapagos flowchart illustrating usage of modules.



FIGURE 6: Generation evaluation time of distributed GAID using Galapagos.



FIGURE 7: Speedup of distributed GAID using Galapagos.



FIGURE 8: Efficiency of distributed GAID using Galapagos.


