
Galapagos: A Generic Distributed Parallel Genetic Algorithm Development Platform for
Computationally Demanding ITS Optimization Problems

Nicolas Kruchten, Research Assistant

Baher Abdulhai, Associate Professor and Director

David de Koning, Research Assistant

Intelligent Transportation Systems Centre and Testbed

Department of Civil Engineering

University of Toronto, Toronto, Ontario, Canada M5S 1A4

Tel/Fax: 416-946-7662/416-978-5054

baher@ecf.utoronto.ca

(Words = 5471, Figures and Tables = 8, Total word equivalent = 7471)

Submitted for Presentation and Publication

TRB 2004

mailto:baher@ecf.utoronto.ca
mailto:baher@ecf.utoronto.ca

ABSTRACT

Numerous Intelligent Transportation Systems (ITS) problems can be formulated as optimization
problems. One promising approach to solving such optimization problems is genetic algorithms.
Due the fact that most transportation optimization problems are large in size (i.e. have many
variables) and computationally very demanding, their solution can be very or even prohibitively
slow. This paper introduces our new experimental development framework for distributed
parallel genetic algorithms, which we call Galapagos. The main motivation behind the
development of Galapagos is to speed up the convergence to solution of large scale ITS problems
to usable, practical timescales.

In highlighting the effective usage of genetic algorithms to solve difficult problems in ITS, we
describe advanced genetic algorithms using parallel population structures and distributed
computation, then describe combinations of these approaches and highlight key issues in terms
of design and implementation, as well as benefits in terms of speed gains. Galapagos components
are then described, and lastly a case study on calibrating an incident detection algorithm is
presented to give one illustration of how Galapagos allows for very rapid convergence. The case
study covers a system previously developed in-house called Genetic Adaptive Incident Detection
(GAID), which uses a single-population single-computer genetic algorithm to optimize sixteen
parameters of a probabilistic neural network classifier. It is shown that recasting GAID as a
Galapagos application significantly and predictably sped up the convergence of this algorithm,
suggesting that the same could be done for a variety of GAs in the ITS field.

INTRODUCTION

Many Intelligent Transportation Systems (ITS) problems can be formulated as optimization
problems, that is, finding the vector x such that a given function z(x) is minimized. These
optimization problems either have large numbers of variables or are simply intractable by
traditional optimization techniques such as gradient-based algorithms, which tend to find local
optima, rather than converging to the desired global optimum, when they are usable at all. Some
functions needing to be optimized are non-differentiable, ruling out traditional search methods. A
representative example of this would be model-parameter calibration by minimization of an error
term expressed as a function of these parameters. In this case, x is the vector of parameters, and z
(x) is the error term: calibration of the system requires the minimization of this error term.
Examples of such systems can be traffic simulation models, neural network classifiers and
origin-destination-estimators, to name a few (1, 2).

Most recently, evolutionary algorithms, specifically genetic algorithms (GA) have
emerged as promising solution methods which are not only able to tackle such difficult problems,
but also able to find global optima or at least better local optima (3). Genetic algorithms,
however, can be impractically slow. For example, GENOSIM, a genetic algorithm based
optimizer for large scale microscopic traffic simulation models that was developed in-house at
the University of Toronto, takes one full week to optimize a 200 km2 simulation network on a
typical Pentium 3 1.0 GHz PC. Such calibration is to be repeated quite often: every time a
significant number of changes are introduced to the network. Another example is the problem of
dynamic origin destination estimation, which plays a central role in our research. This problem
can be cast as an optimization problem with a very large number of variables for a not-too-large
transportation network, but must be solved within a minute or two, which is impossible on any
single desktop computer.

Thus, we sought an expedient approach to the optimization of such demanding ITS
applications. In this paper we introduce our new experimental development framework for
distributed and parallel genetic algorithms, which we call Galapagos. The main motivation
behind the development of Galapagos is to speed up the convergence to solution of large scale
ITS problems to usable, practical timescales.

The first section of this paper is a concise introduction to genetic algorithms. The next
two sections treat GA parallelization and distributed computing separately, starting with
parallelization. The application of distributed computing to GAs and parallel GAs is described
next. The last two sections describe Galapagos, a new software platform developed to study and
use distributed and parallel genetic algorithms in the context of ITS problems specifically. An
application of Galapagos to the calibration of an incident detection algorithm is presented

GENETIC ALGORITHMS

Genetic Algorithms (GAs) are stochastic search methods based on the principles and
mechanisms of natural selection and ‘survival of the fittest’ from natural evolution. Since their
introduction in the 1970s, in Holland’s study of adaptation in artificial and natural systems (3),

GAs have become popular optimization methods. By simulating natural evolutionary processes,
a GA can search the problem’s solution space thoroughly and multi-directionally by maintaining
a population of potential solutions and encouraging exchange between these directions. The
population undergoes a simulated evolution: at each generation the relatively “good” solutions
reproduce, while the relatively “bad” solutions die. To distinguish between different solutions, an
objective function is used for evaluation that plays the role of environment.

Mathematically, a GA emulates the concepts of competition and selection in populations
of living creatures to generate a good solution vector, x, to the problem of minimizing a given
function, z(x). Each solution is treated as an individual or chromosome, the components of which
are genes. Each chromosome has a fitness, usually equal to -z(x) in a minimization context. A
variety of genetic operators (selection, mutation, crossover) are repeatedly applied to an initial
population of such individuals, which can be randomly generated or ‘seeded’, in order to find
fitter and fitter individuals, that is, solutions x with lower and lower values of z(x).

FIGURE 1 Generalized genetic algorithm flowchart.

There are many different ways to implement a GA for a given problem, with variations in
the representation of the solution and in the choice of genetic operators. Each chromosome
encodes a particular solution to the problem at hand, usually a vector of numbers. These numbers
can be converted into one long binary string or can be used as real values. The various genetic
operators chosen for each step in Figure 1 also define the type of genetic algorithm. At each
iteration of the GA, new chromosomes are generated from the current population P(t), populating
the next generation, P’(t), by mutating a single parent and/or by combining genes or portions of
the solution from two or more parents via a process known as mating, or crossover.

Which chromosomes are to be used to produce the new generation depends on the
operator chosen, as does the manner in which each generation is integrated into the population.
For instance, in GAs implementing elitism, each new batch of chromosomes is compared against
their parents and the best members stay in the population, these are known as crowding GAs.
Another approach is to have all of the new generation of chromosomes enter the population,
completely replacing the old one. The number of chromosomes in the population and in each
generation is also a variable that will impact the GA’s operation. One notable configuration is the
steady-state GA, where after each generation is evaluated, only one chromosome is generated
and then inserted into the population only if it displaces another chromosome. Certain GAs also
include adaptive operators and parameters, where, for example, the rate at which mutation occurs
will change as the chromosomes get fitter. A wide variety of parameters and operators have been
proposed and analyzed to varying degrees in the literature (4) while still fitting into the
generalized flowchart above, but it is important to note that no single configuration has proven to
work best in all cases. The choice of operators and parameters is more of an intuitive activity
than a science, but guidelines and heuristics have been developed (5).

PARALLEL GENETIC ALGORITHMS

More sophisticated GA variants, parallel genetic algorithms (PGA), which have multiple
interacting sub-populations (or demes), have been used to generate good solutions more
efficiently. Single-deme GAs are also known as panmictic GAs, because every chromosome in
the population can mate with every other chromosome in the same population, which is not true
of PGAs, where mating is restricted to chromosomes within the same deme. Panmictic genetic
algorithms can generate good solutions to optimization problems, but are not entirely immune to
entrapment in local optima. By using multiple interacting sub-populations, GAs have not only
been shown to be less prone to getting trapped in local minima, as multiple areas of the search
space are explored independently, but also to converge to a solution more rapidly (6).

A PGA, like a panmictic GA, mimics the situations found in nature: semi-isolated islands
where groups of individuals can evolve independently, with sporadic migrations (this is exactly
the type of situation Darwin went to the Galapagos Islands to study in bird populations). On any
given island, the population can begin to lose diversity, or become trapped in a local minimum,
but this can be alleviated by the insertion of new genetic material from another island. In this
way, the global population maintains its genetic diversity and each deme (island) can explore a
different area of the solution space, with periodic input of genetic material from other demes.

Each deme in a basic PGA is essentially a separate GA in its own right. The various
demes interact through a process known as migration, where some chromosomes are periodically
sent or copied into another population. This period is called the epoch. There are various ways to
define the duration of an epoch, the selection of migrants, whether they are copied or moved, and
which chromosomes of the destination deme they replace. Another, very important feature of
PGAs is the topography used to link the demes.

The topography defines which demes send migrants to which other demes. In a fully
connected topography, every path is possible, but this is often not the optimal configuration.
Various topographies have been proposed and studied, but two major classes are important to
note: fine-grained topographies, also known as diffusion (5, 6, 7) and coarse-grained
topographies, also known as cellular GAs. Granularity refers to the ratio of computation time to
communication time.

In a coarse-grained PGA, there are usually a few, highly connected large demes and the
migration rate is low. This low migration rate means that more time is spent computing values
and applying genetic operators than migrating chromosomes. In fine-grained PGAs, there are
usually a large number of loosely connected, small demes with a high migration rate. The choice
of topography for a given problem is beyond the scope of this paper, but has been explored in the
literature (5, 6, 7).

FIGURE 2 Possible PGA topographies: (a) fine-grained and (b) coarse-grained.

One major drawback common to all GAs, however, is that they often require hundreds or
thousands of function evaluations: for every x, z(x) needs to be computed, which can be very
time-consuming, especially in model-parameter calibration problems, where evaluating the
objective function can amount to running a whole simulation.

DISTRIBUTED COMPUTING

When faced with an excessively computationally intensive problem, the usual solution is to use a
faster computer (i.e. with a faster processor). More recently, however, affordable computers with
multiple processors, cheap computer clusters and ‘grid computing’ (8) have also emerged as
effective ways of dealing with computationally demanding tasks and together they are known as
distributed, or parallel, computing. Each of these systems includes more than one processor,
either in the same machine or distributed over a network.

A processor is inherently sequential; it cannot execute two programs or processes
simultaneously. This is often emulated by multiplexing, however, with each process being
allowed to run in turn for a short amount of time, giving the impression of simultaneity (pseudo-
parallelism). Using more than one processor means that more than one process or more than one
part of the same process can execute truly simultaneously with no loss in speed. Multi-processor
machines have been dropping in cost since their inception and consumers can now readily obtain
very powerful dual-processor machines at an accessible price. Computer clusters are groups of
separate computers, with single or multiple processors, linked together and specially
programmed to work cooperatively to solve problems. The concept of ‘grid computing’ is based
on the idea of having a large, fluid pool of available computing resources, counted in the
hundreds or thousands of computers that can be harnessed on demand by a resource-hungry
process.

One example of this is the very successful SETI@Home project (9), in which members of
the public can download software that runs while their computer would otherwise be idle. Each
computer processes blocks of radio-telescope data to help in the search for extra-terrestrial
intelligence (SETI). Grid components can be added to or removed from the pool as appropriate
and computation continues. A simple way of dealing with this sort of system is to have one
central dispatcher which continually gathers jobs from master processes, distributes them among
the available slave processes in the pool, gathers the results of the jobs’ execution and returns
them to the masters. In this fashion, the dispatcher acts as an abstraction layer between the
masters and the slaves: there can be as many of each as needed or available, and neither must
deal directly with the other.

FIGURE 3 Simple grid-computing architecture.

Note an important distinction between the ‘parallel’ in PGA and what is described above
and known as ‘parallel computing’. Parallel computing distributes the computation over multiple
processors, all executing simultaneously (i.e. in parallel); whereas, the ‘parallel’ in PGA usually
refers to the structure of the population. A PGA can execute sequentially on a single processor,
and the parallelism in the evolution of the demes is simulated. By convention in this research, we
use the term ‘distributed’ instead of ‘parallel’ when referring to computation, and use ‘parallel’
only when referring to the GA’s population structure.

Not all problems can be effectively distributed, and a good measure of this is the fraction
of the problem (in terms of execution time) which can be parallelized in time, as the portions of

the algorithm which must run serially cannot be parallelized. In most GAs, the parallelizable step
is the most time-consuming one: the evaluation of the chromosomes. Thus there is a large
enough distributable fraction that GAs are known to be ‘embarrassingly parallelizable’.

In the distribution of computational tasks, the following merit consideration:
• Speedup: the ratio of execution speed of n processors versus 1 processor. (The ideal result in

distributed computing is linear speedup: 2 processors execute in half the time, 3 in a third and
so on.)

• Efficiency: the fraction of linear speedup achieved.
• Scalability: how speedup changes with n.
• Robustness: how well the system recovers from errors (e.g. processors crashing mid-

computation, etc.)
• Adaptability: how well the system can integrate heterogeneous resources, that is, processors

of different speed and memory characteristics or network connection qualities.
• Transferability: how easy is it to run the system in a totally different environment (related to

adaptability).
The possibility of super-linear speedup (i.e. efficiencies higher than 1) is a controversial

issue. Common-sense suggests that any task that can be parallelized can be run serially as, if not
more, efficiently due to parallelization costs but some have suggested various justifications for
the existence of super-linear speedup, including hidden costs in serial computing (10). Great care
must be taken in evaluating speedup in various distributed applications, as various factors could
lead to mistakenly observing super-linear speedup. Speedup is also a difficult measure in
distributed systems with heterogeneous processors, and other measures may be more appropriate
in these contexts (6).

Scalability, robustness and adaptability are important to varying degrees, depending on the
application. If the system is to be deployed on a particular, well-known homogeneous system
with a fixed number of identical processors, as in the case of a given multi-processor computer,
then scaling, flexibility and transferability are less important. If, however, the system is to be
used on a variety of networks, where processors are prone to crashing or the number or capacity
of processors is known to be variable (e.g., in a grid), these issues take on more importance.

COMBINING DISTRIBUTED COMPUTING AND GENETIC ALGORITHMS

Distributed computing can be used with GAs in a variety of ways, in order to take advantage of
problem-specific properties or the available hardware. While any GA, including PGAs, can be
implemented and run on a single processor, they are easy to distribute and this can greatly speed
up convergence. The function evaluation step of a GA (see figure 1) is inherently easy to
distribute; many such evaluations are required and they do not depend on one another, so they
can be executed at the same time on different processors. For a panmictic GA, distribution takes
the form of a master/slave architecture, where all of the genetic operations happen within the
master process and all of the function evaluations occur within the slave processes. This type of
architecture is a canonical application of grid computing as described above.

PGAs can be very effectively distributed, with one processor managing each deme. In
this case, there are no masters or slaves and the processors are known as peers. The problems of

how to structure a GA’s population and how to distribute the computational load are thus not
unrelated: the available configuration of computer and network hardware can impact the choice
of GA structure (PGA vs. panmictic, fine-grained vs. coarse-grained, etc) as can the nature of the
problem. If the definition of granularity seems out of place when discussing a PGA’s population
structure, it is because this term comes from the distributed computing field, where
communication time between processors is an important dimension to consider when designing
systems. If the cost of a single evaluation a – its duration in time – is a tenth of the cost of
communication to send the results somewhere, then it might be more efficient to perform 20 to
30 evaluations before sending any data, if possible. With this in mind, it becomes clear what
types of hardware configurations or problems are well suited for coarse or fine-grained
distribution PGA architectures. When the cost of computation of one work-unit is higher than the
cost of communication, a finer-grained architecture might be appropriate. When communication
costs are comparatively high, it makes more sense to use a coarser-grained distribution scheme.

Beyond the basic distributed PGA architecture, more complex forms are possible. Each
deme in a PGA is essentially a GA, and could in fact be another PGA with a different granularity
or a distributed panmictic GA. Demes can also be substantially different from each other in a
given PGA. PGAs where demes are not identical (i.e. different operators, parameters or
population structure) are known as heterogeneous PGAs. Super-linear speedup has been reported
for both homogeneous and heterogeneous PGAs, but as noted, such results are controversial (6).

GA design is mostly concerned with operators and parameters while PGA design
addresses migration and topography. Distributed computing is a field in its own right, as it is
possible (but often much harder) to distribute other algorithms than GAs. The integrated design
of distributed PGAs, however, incorporates all of the above challenges as well as that of mapping
computational tasks to specific hardware: the end result must be an efficient GA whose
operators, parameters and population architecture are well-suited to both the problem at hand and
the hardware and network available.

GALAPAGOS AND LIGHTGRID

We have designed and built Galapagos and LightGrid to implement distributed PGAs primarily
for ITS applications. Galapagos is a generic distributed PGA development platform, built on top
of a lightweight, generic grid-computing platform we name LightGrid (see Fig. 4), both of which
were concurrently developed at the University of Toronto ITS Centre. Galapagos makes it easy
to design, implement and use any of the distributed and parallel GA configurations described in
this paper, tailored to the problem and available hardware.

FIGURE 4 Layered architecture of LightGrid and Galapagos.

This layered approach to software development allows replacement of any of the layers
by other software that performs the same function. For example, we could replace the LightGrid
layer by a more heavy-duty grid-computing engine, or Galapagos can run in a ‘single-computer’
mode, bypassing the LightGrid layer altogether. The Galapagos and LightGrid components can

also each be upgraded independently of the other, while maintaining functionality of older
applications.

The LightGrid software consists of a simple master/slave model mediated by a job-
dispatcher process. A LightGrid master process assigns a job to the dispatcher, which queues it
for processing by a LightGrid slave process. This system is a ‘light-weight’ grid-computing
platform as it is intended for controlled use in an academic environment. Using LightGrid, a
variety of non-GA distributed applications can also be easily developed.

Galapagos extends the LightGrid master and slave processes by adding generic GA
capability. A Galapagos slave process essentially is an objective function evaluator, while a
Galapagos master manages a given deme or set of demes. Galapagos is a generic system because
it is not problem-specific: it provides program building blocks with which to implement any GA
in any configuration. All that is needed to run any given GA configuration is the provision by the
developer of 5 modules:
• a selector: this module defines the parent-selection step in a GA iteration as well as the rules

governing which of the new chromosomes enter the population
• a breeder: this module defines the type of crossover used in a GA iteration
• a mutator: this module defines the rules for gene mutation
• a migrator: this module defines PGA topography, and migration selection rules
• an evaluator: this module is deployed as part of the slave process and defines the objective

function. This module can invoke other third-party software to perform specific computation
(for instance, can invoke a traffic simulator to run a network under certain control
configuration).

FIGURE 5 Galapagos flowchart illustrating usage of modules.

This highly modular system was implemented according to the principles of object-
oriented (OO) programming with the Java programming language. OO programming embodies
the idea that each piece of data in a program is an object, which has both associated attributes
(variables) and operations (functions or procedures) (11). This approach leads to a clear
encapsulation of data into re-usable and understandable software components. Java was designed
specifically for OO programming and is well suited to this sort of application. As well, Java
software is portable; it can run on almost every operating system in existence, meaning that the
software developed is adaptable and transferable to computers running a variety of operating
systems such as Windows, Linux, and other UNIX variants.

Galapagos allows the GA developer to specify any number of populations, using any GA
operator, in any deme topography, distributed over separate processors in a variety of ways. A
library of selector, breeder, migrator and mutator modules is under development, allowing a
developer to simply pick and choose operators and parameters, but the system is open to
extension (i.e. anyone can write a new operator module and use it). The evaluator module defines
the problem itself: the objective function. The evaluation of the objective function can be written
in Java, but it is also possible for this module to invoke third-party programs; for example, if the
problem is model-parameter-calibration for a given software package, the evaluator can run this

software package with a given set of parameters (the chromosome x) and score the output in Java
according to some scheme (the objective function z(x)).

GALAPAGOS IN ACTION ON INCIDENT DETECTION

Genetic algorithms have been used in the past to perform automated incident detection by
calibrating an artificial neural-network classifier (2). We used Galapagos to distribute and
parallelize such a system, Genetic Adaptive Incident Detection (GAID). The GAID system
comprises of a standard genetic algorithm whose 16-gene chromosomes represent the 16
smoothing parameters for a probabilistic neural-network (PNN) with 16 traffic measurements.
The objective function consists of ‘scoring’ the PNN’s ability to correctly classify incidents and
non-incidents. This 16-dimensional function is difficult to differentiate and standard optimization
techniques are not adequate to optimize the objective function. Further details about GAID can
be found in (2), which does not specify the exact operators or parameters to be used in
implementing the system. The implementation of GAID used in this research used the following
operators and parameters, for reference: a single population of 50 chromosomes, generations of
50 chromosomes each, random selection of 2 parents, discrete recombination crossover, worst
bias replacement crowding and adaptive mutation rate linearly varying with the fitness range in
the population.

The hardware available to do this consists of a large number of moderately powerful
single-processor desktop machines: 50 computers, running at 1.4 GHz and using the Linux
operating system which are a part of the University of Toronto’s Engineering Computing Facility
(ECF) public computer labs. These machines are linked together into a standard megabit
Ethernet network switch where every computer can easily communicate with every other one.
The Galapagos slaves were run as background processes on these publicly accessible machines
while normal usage of these computers by engineering students continued undisturbed.

GAID was successfully distributed under a panmictic model across ECF using
Galapagos. The computational load was distributed across 50 computers with no loss in solution
quality compared to the single-computer version of GAID. The grid-computing nature of the
LightGrid engine also proved to resist well to large changes in slave performance or instances
where slave machines crashed or stopped returning results.

The speedup experienced is somewhat difficult to quantify for a few reasons. First of all,
GAs, being stochastic processes, can yield a wide range of convergence times and, if they do not
converge to the global optimum, can converge to a wide variety of local optima, depending on
the function. Second, the tests were run on a variety of machines, under a variety of load
conditions (i.e. some machines were being used concurrently by students, reducing the amount of
processing power available to the Galapagos slave process). Third, speedup involves comparing
the execution time of the whole system to that of one computer, and the execution speeds of
individual computers varied over time and with respect to each other. Finally, the relationships
between the number of slaves available, the distribution of their processing power and the
number of chromosomes per generation affect the execution speed of the whole system in a
complex manner (which is modeled below), as can the job-dispatching policy employed by the

dispatcher (i.e. in what order the jobs are assigned and to which slave), but while that is beyond
the scope of this paper, Galapagos is an ideal platform for studying these relationships.
 The time to convergence can be estimated with the following reasoning: the distribution
of GAID using Galapagos did not modify the panmictic algorithm, it just distributed the
parallelizable step, so GAID on one or many computers should converge in the same number of
generations, empirically found to be around 23 with the set of operators and parameters used.
The problem, then, is estimating the amount of time a set of computer will take to process a
single generation, which can be lower-bounded with the following equation:

where:
• tgen = the computation time for one generation
• s = the number of slave processes
• g = the number of chromosomes per generation
• vi(x) = the ‘instantaneous computation speed’ in terms of ‘evaluations per time’ of slave i at

time x
• q = the granularity (the ratio of evaluation cost to communication cost)
The right-hand side of the equality is the number of evaluations completed at time t, thus when
this is equal to g, the generation has been evaluated, assuming that the fastest slaves always get
assigned jobs first, which is a non-trivial task for the dispatcher, as it would involve predicting vi

(x). This model is quite complex, as it incorporates the variation over time of a given slave’s
computational power. Taking vi to be constant (the inverse of the costs of evaluation plus
communication), we get:

which is much more practical, given that it is unlikely that we will ever have access to vi(x). The
floor function is used in both of these because we cannot say that having two half-evaluated
chromosomes is equivalent to one fully-evaluated one, which is the essence of the problem of
dispatching policies. This equation also gives us an upper bound on the speedup and efficiency
we can expect on the distributable portion of a GA, which comprises the bulk of the algorithm’s
computational load, given that the selection/mating steps in the algorithm execute in an almost
negligible time compared to the evaluation of a chromosome.

The 50 computers available to us varied in speed but all took around 4 seconds per
evaluation (including communication cost, which was negligible), and the following graphs
show empirically observed evaluation time for a generation, speedup and efficiency of the
system as compared to an ideal system comprised of identical machines that can compute and
communicate the results of every job in 4 seconds and to the ideal linear speedup case. The
speedup reported is with respect to the speed of the single-computer data point. The observed

and predicted values are extremely close, and the predicted values correctly lower-bound the
evaluation time and upper-bound the speedup and efficiency.

FIGURE 6: Generation evaluation time of distributed GAID using Galapagos.

FIGURE 7: Speedup of distributed GAID using Galapagos.

FIGURE 8: Efficiency of distributed GAID using Galapagos.

Note that in all three graphs, the observed and predicted behaviours both approach ideal
linear speedup when g/s is close to an integer value (i.e. at s = 5, 6-7, 10, 12-13, 25 etc) and that
the marginal gains in evaluation speed are almost zero in between these points. This is due to the
fact that when, 48 machines are available, two of them must evaluate two jobs in order to make
50, while the other 46 sit idle, reducing efficiency. This scalability behaviour has important
implications when designing distributed panmictic GA systems, as the generation size g is not
always a variable that can be set to arbitrary values. Some experiments were done involving an
asynchronous system with a generation size of 1, which displayed qualitatively good scalability
and adaptability, but overall less speedup. The details of that system are outside the scope of this
paper.

In principle, similar speedups and efficiencies could easily be obtained with Galapagos
for GAs targeting other transportation problems, using already-available under-used hardware in
existing networks (like the ECF computers), essentially allowing access to super-computer
processing power with no additional outlay of funds.
 GAID was also successfully implemented as a PGA using Galapagos as a proof-of-
concept, but no rigorous analysis of its performance was performed beyond noting that it did not
perform any worse than the panmictic version.

CONCLUSIONS

Galapagos has already successfully been used to drastically lower the computation time of GAs
applied to difficult transportation problems and further applications are in development. It will be
used in the near future to implement various new GA projects at the University of Toronto ITS
Centre and can also be used to re-implement existing GAs as distributed GAs. Standard single-
computer, single-population genetic algorithms can take a long time to generate good solutions
to demanding optimization problems in ITS. However, parallelization of the GA’s population
structure and the distribution of computational load are very effective and easily applied ways to
speed up the solution of challenging optimization problems. The Galapagos platform is a
flexible, easy-to-use and easy-to-deploy distributed PGA software package and is very promising
in terms of opening up new avenues of research in transportation by bringing within reach the
possibility of very rapidly getting good solutions to previously intractable transportation
problems.

REFERENCES

1. Ma, T., and Abdulhai, B., “GENOSIM: A Genetic Algorithm-Based Optimization Approach
and Generic Tool for the Calibration of Traffic Microscopic Simulation Parameters”, Journal
of the Transportation Research Record, TRR # 1800, 2002.

2. Roy, P., and Abdulhai, B., “GAID: Genetic Adaptive Incident Detection for Freeways”,
Transportation Research Board 2003, Also Accepted, Journal of the Transportation Research
Record, 2003 (forthcoming).

3. Holland J.H. 1975, Adaptation in Natural and Artificial Systems, The University of Michigan
Press, Ann Arbor, Michigan

4. Chambers, Lance. Practical Handbook of Genetic Algorithms. CRC Press, New York, 1995.
5. Cantú-Paz, Eric. Designing Efficient and Accurate Parallel Genetic Algorithms, PhD Thesis,

1994
6. Alba, E., Nebro, A., and Troya, J. Heterogeneous Computing and Parallel Genetic

Algorithms. Journal of Parallel and Distributed Computing 62, 1362–1385 (2002)
7. Alba, E, and Troya, J. An Analysis of Synchronous and Asynchronous Parallel Distributed

Genetic Algorithms with Structured and Panmictic Islands IPDPS 1999 Workshop Online
Proceedings http://ipdps.eece.unm.edu/1999/biosp3/alba.pdf Access July 30, 2003

8. Myer, Thomas, IBM, May 2003 http://www-106.ibm.com/developerworks/grid/library/gr-
fly.html?ca=dgr-lnxw01GridFlyover Accessed July 30, 2003.

9. SETI@Home http://setiathome.ssl.berkeley.edu/ Accessed July 30, 2003.
10. Gustafson, J. "Fixed Time, Tiered Memory, and Superlinear Speedup”. Proceedings of the

Fifth Distributed Memory Computing Conference (DMCC5), October 1990.
11. Booch, Grady. Object-oriented analysis and design with applications. Addison-Wesley,

Menlo Park, CA, 1994.

LIST OF FIGURES

12. Generalized genetic algorithm.
13. Possible PGA topographies.
14. Simple grid-computing architecture.
15. Stack architecture of LightGrid and Galapagos.
16. Galapagos flowchart illustrating usage of modules.
17. Generation evaluation time of distributed GAID using Galapagos.
18. Speedup of distributed GAID using Galapagos.
19. Efficiency of distributed GAID using Galapagos.

FIGURE 1 Generalized genetic algorithm flowchart.

FIGURE 2 Possible PGA topographies: (a) fine-grained and (b) coarse-grained.

FIGURE 3 Simple grid-computing architecture.

FIGURE 4 Layered architecture of LightGrid and Galapagos.

FIGURE 5 Galapagos flowchart illustrating usage of modules.

FIGURE 6: Generation evaluation time of distributed GAID using Galapagos.

FIGURE 7: Speedup of distributed GAID using Galapagos.

FIGURE 8: Efficiency of distributed GAID using Galapagos.

