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ABSTRACT 

This paper describes the procedure for estimating a household model of mode choice.  The tour-

based mode choice model incorporates inter-personal interactions within the household explicitly 
in an agent-based random utility modelling framework.  Household interactions include vehicle 

allocation, ride-share to joint activities and drop-off pick-up.  Because of the complex nature of 

the model decision structure, choice probabilities are simulated from direct generation of random 
utilities rather than through an analytical probability expression.  The computational 

requirements for the simulation are large. Therefore a grid of computers is used in parallel to 

perform the necessary calculations and a genetic algorithm is used for parameter estimation.  

This paper presents a brief description of the model, the full model results and a discussion of the 
computational techniques used in parameter estimation. 
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INTRODUCTION 

This paper describes the procedure for estimating a household model of mode choice.  
The tour-based mode choice model incorporates inter-personal interactions within the household 

explicitly in an agent-based random utility modelling framework.  Allocation of household 

vehicles is necessary when the demand for vehicles by members of the household exceeds the 

number of household vehicles at any time during the day.  Vehicles are allocated to maximize 
total household utility.  The passenger mode is modelled as a joint decision between the driver 

and passenger(s) to ride-share.  The model includes explicit evaluation of drop-off and pick-up 
scenarios, in which the decision to rideshare is made if the utility gain of the passenger exceeds 

the driver’s utility loss (due to making an extra trip or travelling longer distances out-of-the-

way).   

The model is both tour-based and trip-based.  It is trip-based in that the ultimate output of 
the model is a chosen, feasible travel mode for each trip in the simulation. These trip modes are, 

however, determined through a tour-based analysis.  A key organizing principle in the model is 

that if a car is to be used on a tour, it must be used for the entire tour, since the car must be 

returned home at the end.  No such constraint, however, exists with respect to other modes such 

as walk and transit.   

Because of the complex nature of the model decision structure, choice probabilities are 

simulated from direct generation of random utilities rather than through an analytical probability 

expression.  The computational requirements for the simulation are large. Therefore a grid of 

computers is used in parallel to perform the necessary calculations and a genetic algorithm is 

used for parameter estimation.  The next section of this paper discusses some of the background 

theory and our motivation for using a genetic algorithm for estimating parameters.  This is 

followed in Section 3 with some definitions, a description of the model method in Section 4 and 

the data in Section 5.  The computational techniques used for parameter estimation are described 

in Section 6, followed by the full model results and conclusions. 

 

BACKGROUND THEORY 

Mode choice modelling has a rich history of well over 30 years in the econometric 

decision analysis literature.  It is one of the classic decisions for which new model structures and 

theoretical concepts are tested.  Common econometric models for modelling tour-based mode 

choice are multinomial logit (e.g. 1,2) and nested logit (e.g. 3,4).  These models are based on 
random utility theory, which assumes that people make rational decisions in order to maximize 

their level of satisfaction (utility).  Utility U(m,t,p) of mode m for trip t on chain c by person p, 

as shown in Equation 1, is assumed to consist of a systematic component V(m,t,p) which is 

formulated as a linear function of explanatory variables x and parameters β, and an error term, 
which is assumed to be randomly distributed. 

 
U(m,t,p)  =  V(m,t,p) + ε(m,t,p)  t∈T(c,p); m∈f(t,p)    (1) 

 

where: 

V(m,t,p)= systematic utility component of mode m for trip t for person p 
ε(m,t,p)= random utility component of mode m for trip t for person p 

T(c,p) = set of trips on chain c for person p 

f(t,p) = set of feasible modes for trip t for person p 
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Under the assumption of random utility maximization, each person p is assumed to 

choose the mode m that results in the highest U(m,t,p).  The distribution of the error term 

ε(m,t,p) is generally chosen for analytical convenience.   
Parameter estimation is usually done by choosing the maximum likelihood set of parameters, 
(the set of parameters that is most likely to result in the model prediction of observed choices).  

The log-likelihood function L for a particular set of parameters β is written in Equation 2. 
 

L(β)  =  Σh Σp∈H(h) Σc∈C(p) Σt∈T(c,p) log(P(m*,t,p|β))      (2) 

 

where: 
 

H(h) = set of persons observed in household h 
C(p) = set of home-based tours for person p 

β = vector of model parameters (including parameters of the error  

P(m*,t,p|β) = simulated probability of person p choosing the observed mode m* for trip t on 

chain c, given the model parameters β. 

 

Neither the multinomial logit nor the nested logit models, however, are suitable for 

choice situations where the choice tree structure is non-trivial.  Explicit incorporation of vehicle 

allocation, ridesharing and chain logic in the choice structure can improve the behavioural 

realism of mode choice models, however, their inclusion results in a level of complexity that 

does not lend itself well to an analytical solution.   

Fortunately, simulation is available as a computationally expensive but flexible tool for 

maximum likelihood parameter estimation (see 5).  In this technique, the error term is simulated 

directly, resulting in specific, discrete mode choices being made in the model, rather than an 

integration of the error terms resulting in a probability for each mode being chosen.  The mode 

choice decision must be replicated in this way many times to achieve a statistically valid 

representation of the choice process.   

The use of a simulation approach allows for the use of virtually any error structure (we 

have assumed a normal distribution) without adding new layers of complexity to the model 

estimation process (6).  It also means that the decision process need not be constrained to 

mathematical formulations that have a simple closed-form solution.  For these two reasons it is 

chosen for use in this modelling effort, in spite of its computational intensity. 

 

DEFINITIONS 

The mode choice model handles different trip and tour types in different ways.  In 
particular there are different scenarios in which household members travel together.  To 

understand the method for handling these scenarios we first present definitions of the different 

scenarios, in Figure 1. 
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Joint Trip - A joint trip is a trip in which more than one 
household member travel together to or from a joint 
activity.  This can either be a rideshare trip (by car), 
taking transit together, walking together, etc. 

 
Serve Passenger Trip - A trip made by one member of a 
household for the purpose of transporting another 
member to their desired activity.  A serve passenger trip 
may include a passenger (e.g. the trip to drop someone 
off), or may not include a passenger (e.g. the return trip 
home after dropping someone off).  

Pure Joint Tour – A joint tour is a tour in which more 
than one household member travel together to or from at 
least one joint activity.  A pure joint tour occurs when 
all of the activities on the tours of multiple household 
members are joint activities.  These household members 
travel together to and from joint activit(ies), and all of 
these household members make the same trips on the 
entire tour, at the same times to the same locations.  
Mode choice for pure joint tours is assumed to be a joint 
decision, simultaneously determined for all joint activity 
participants. 

 

Partial Joint Tour - A partial joint tour is possible when 
some but not all of the activities on the tours of multiple 
household members are joint activities. A partial joint 
tour occurs when some but not all of the trips in each of 
these household members’ tours, accessing or egressing 
from the joint activity, are at the same time, have the 
same origin and destination, and are by a shared mode.   

 
Pure Serve Passenger Tour - A tour made by one 
household member solely for the purpose of picking up 
or dropping off another household member.  No 
activities other than “dropping off” or “picking up” are 
conducted on a pure serve passenger tour.   

 
En route Serve Passenger Tour - A tour made by one 
household member that includes at least one serve 
passenger trip, but also includes other activities before 
or after the serve passenger trip.  For example, a tour in 
which a parent drops off a child at school on the way to 
work would be considered an en route serve passenger 
tour.   

 

FIGURE 1 Trip and tour definitions 
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METHOD 

The mode choice model method can be summarized as follows: 

 

Step 1  Individual tour mode choice 

• Mode choice for individual trip-maker is determined based on a random utility 

maximization framework that incorporates a tour-based decision tree structure.  

• Trip-level and tour-level rules for mode availability are enforced.   
• For pure joint tours (tours that involve more than one person for all activities on the tour) 

mode choice is determined simultaneously by all tour participants.  
 

Step 2  Vehicle allocation  

• Allocation decisions are made at the household level to maximize household utility.  
 

Step 3  Serve passenger matching procedure 

• Compatible individual tours are considered for en route serve passenger tours and partial 

joint tours.  Shared rides are chosen for compatible individual tours if it improves total household 

travel utility. 

 

Step 4  Pure serve passenger tours 

• If en route serve passenger opportunities are not available, then pure serve passenger 

tours are considered if a driver is available at home.  Such arrangements are chosen if it improves 

total household utility.  

 

A conceptual description of the mode choice model presented in this paper has been 

described in (6).  However, the prototype implementation of this model was incomplete.  It did 

not include the implementation of joint tours, within household ridesharing, drop-offs and pick-

ups.  The mode choice model presented in this paper includes the following modes: auto drive, 

auto passenger (serve passenger tours), rideshare (for pure joint tours), transit all-way, and walk.  

Bicycle, taxi, drive access transit, commuter rail and school bus are excluded because they 

represent a very small proportion of total reported trips in the Greater Toronto Area.  Carpool 

(inter-household) trips are excluded from the model and reserved for future study because they 
require understanding of inter-household interactions.  The remainder of this section gives a brief 

summary of the methods for the steps described above. 

 

Individual Trip-Maker Tour Mode Choice 

The objective of the mode choice model is to select a mode of transportation for each trip 

made by each member of the household such that trip and chain level rules are satisfied, vehicle 
allocation constraints are not violated and the total utility of the household is maximized.   

Consider first the case where an individual chooses the modes of transportation for trips 

within a tour.  Figure 2 shows the basic trip chain-level decision that is made, within which a 

number of sub-decisions are made for individual trips within the trip chain.  Clearly, the choice 

of whether to take an automobile along on the chain has very strong implications for all trips on 
that chain and for the decision making of other household members.  First, it is necessary that the 

vehicle be returned back home at the end of the chain.  Second, the vehicle must be used for 

every trip on the chain unless the driver plans to return to the same location to “pick up the 
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vehicle” before returning home.  Finally, if the vehicle is being used by one household member, 

it is unavailable for other members to use as long as it is out of the driveway.   

Conceptually, bicycles could be treated in exactly the same way as automobiles, as 

shown in Figure 2.  However, the bicycle mode is not included in the model specification 
presented in this paper, because the mode comprises only 0.8% of total reported trips in the base 

data. 
For the “non vehicle” chain alternative, the mode choice decision for each individual trip 

is assumed to be independent of the decisions for the other trips within that chain.  The 

maximum utility non-personal vehicle mode is chosen for each trip in the chain.   

Sub-chains add an additional level of complexity to the choice structure.  For example, an 
individual can drive to work, walk to a restaurant for lunch, walk back to work, and return home 

by car at the end of the workday.  Generally, if a sub-chain exists, then non-vehicle modes are 
available for trips on that sub-chain even if the main part of the chain is made using a car or a 

bicycle. 

 

FIGURE 2 Mode choice tour-level decision tree 

 

There are a number of sub-choices within the with-car chain alternative.  A car may be 

used to access a commuter rail station or a park-and-ride subway station.  The car may be used to 

get to work but may be left in the work parking lot while the owner walks or takes a taxi to go 

for lunch (or in other words, to participate in a work-based sub-chain), only to return to work and 

drive back home again.  These complex chain types are handled in the model using the concept 

of a “chain mode set”, defined as a feasible set of modes for the trips in the chain that satisfy the 

constraint that an automobile must be returned home at the end of the chain without being left 

stranded at any point in the chain.  

As discussed in (6), a random utility approach is adopted in this model to determine the 

choice among these options.  The utility of person p choosing mode m for trip t on trip chain c, 
U(m,t,p), is formulated in the usual way as shown in Equation 1. 

Further, we assume that the utility for a specific combination of modes for the entire trip 

chain c, U(M,p) is simply the sum of the individual trip utilities shown in Equation 3: 
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U(M,p)  =  ∑t∈T(c,p) V(m(t),t,p) + ∑t∈T(c,p) ε(m(t),t,p) M∈F(c,p)   (3) 

 

where: 
M = one set of specific feasible modes for the trips on chain c for person p (the chain 

mode set) 
F(c,p) = set of chain mode sets for chain c for person p; this set is defined by both a priori 

trip constraints (e.g., trip distance too long to walk) and chain-based “contextual” 

constraints (e.g., can’t use auto-drive on return trip if it was not used on the 

outbound trip) 
 

Equation 3 is a key assumption in the model design, although it is not clear that attractive, 
practical alternatives to this assumption exist.  It is essential to provide a consistent comparison 

between chain-based and trip-based modes, as well as to deal with ridesharing and joint-travel 

mode choices.  Also note that this linear additive assumption is implicit in conventional trip-

based models. 

The standard random utility assumption is made that the chain mode set chosen is M* for 

which: 

 

U(M*,p)  ≥  U(M,p)  ∀ M,M* ∈ F(c,p); M* ≠ M     (4) 

 

That is, the drive or (optimal) non-vehicle chain mode set will be chosen for the given trip chain, 

depending on which provides the maximum utility to the trip-maker. 

We use a microsimulation approach to evaluate Equation 4 directly.  For each trip, the 

ε(m,t,p) term is generated randomly, assuming a normal error distribution.  Given the randomly 
generated ε’s, and the systematic utility V(m,t,p) the highest utility chain mode set can be 
identified and chosen.  To determine the maximum likelihood parameters, it is necessary to 

compute P(M*,p) by replicating the process many times and determining the frequency with 

which the observed chain mode set is chosen.  This is discussed in more detail in Section 6. 

 

Pure Joint Tours 

If multiple household members engage in tours that consist only of joint activities, then 

the tour is labelled a pure joint tour and mode choice is considered to be a joint decision.  For 

pure joint tours, it is assumed that the total utility for all persons involved on the joint tour is 

equal to the sum of the utilities of the joint tour mode set (Mj) for each person: 

 

U(Mj,J)= ∑p∈J(c) U(Mj,p)     Mj∈Fj(c,J(c))    (5) 
where: 

Mj  =  one set of specific feasible modes for the trips on pure joint tour (chain) c for person p 

(a joint tour mode set) 

Fj(c,J(c)) =  set of joint tour mode sets for chain c for persons J(c); this set is defined by both a 

priori trip constraints (e.g., trip distance too long to walk), chain-based “contextual” 

constraints (e.g., can’t use auto-drive on return trip if it was not used on the outbound 

trip) and joint tour constraints (all persons must travel using the same mode of 

transportation) 

J(c)  =  set of persons participating on the joint tour c 
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Vehicle Allocation 

Initially, the mode choices for individual tours and for pure joint tours are made without 

regard for the availability of household vehicles at particular times of day.  However, in many 

instances the tours in a household overlap in time.  If the number of vehicles available to the 
household is less than the number of overlapping with-car tours, then a decision must be made as 

to which household member uses the vehicle.  In such cases, all possible vehicle allocations are 
evaluated and the allocation that results in the highest overall household utility is chosen.  Those 

household members that are not allocated a vehicle as a result of this evaluation are assumed to 

choose the highest utility non-vehicle chain mode set.   

 

En-Route Serve-Passenger Tours 

Opportunities exist within the household for ridesharing, even when activities are not 
done together.  One common example is that of parents dropping-off or picking-up children at 

school en-route to work or other activities.   In such situations, the person that serves the 

passenger (i.e. gives them a ride) experiences an increase in travel time and inconvenience, in 

order to chauffeur another household member, who as a result experiences an improvement in 

travel utility.  Our model approach assumes that household members first consider their tour 

mode choices individually.  Serve passenger opportunities are then evaluated in terms of total 

household utility, that is, if the increase in utility experienced by the passenger exceeds the 

decrease in utility experienced by the driver, then the serve passenger arrangement is chosen.  

Otherwise, the driver drives alone, and the would-be passenger chooses the best alternative 

available mode.  Formally, the travel utility gain for the serve passenger alternative ∆Us,p for 
person p involved on the serve passenger trip can be written as follows: 

 

∆Us,p = Σts∈Ts(c,p) U(ms,ts,p) - Σt∈T (c,p) U(m,t,p)         (6) 
 
where: 

t  =  the trip made without serve passenger 

ts  =  the trip made with serve passenger 

m  =  the mode for trip t without serve passenger  

ms  =  the mode for trip ts with serve passenger 

T(c,p)  =  the set of trips t on chain c for person p, without serve passenger 
Ts(c,p) =  the set of trips ts on chain c for person p, with serve passenger 

 

The total household travel utility gain for the serve passenger alternative ∆Us is: 
 
∆Us  = Σp∈Js (c) ∆Us, p          (7) 

 

where:  

Js(c)  =  the set of persons involved in the serve passenger alternative for chain c. 

 
The serve passenger alternative is chosen if ∆Us > 0. 
 

We note that, in addition to the change in travel utility, there may also be changes to 

activity utility (the utility that one derives from participating in an activity at some time, at some 

location, for some duration) because activities can change when those wanting to serve a 
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passenger need to modify their schedules.  In this model of mode choice, as with other mode 

choice models in the literature, this utility is ignored. 

 

Partial Joint Tours 

A tour is a candidate to be a partial joint tour if at least one but not all of the out-of-home 

activities on the tours of multiple persons in the household are joint activities.  The procedure for 
assessing partial joint tours is a special case of the more general procedure described for serve 

passenger tours.  By definition, tours that are candidates to be partial joint tours include trips that 

have common origin, destination and timing for multiple people.  For these trips, therefore, it is 

not necessary for one person to make adjustments to their tour to include a “drop-off / pick-up” 
activity.  Hence, the rideshare feasibility rules need not be applied in this case; the rideshare 

mode will always be feasible provided there is a vehicle available.  Equations 6 and 7 can 
therefore be applied directly to determine whether a partial joint tour is formed. 

 

DATA 

The mode choice model is based on data from the 1996 Transportation Tomorrow Survey 

(TTS), a conventional trip diary survey carried out on approximately 5% of the population of the 

Greater Toronto Area.  This high quality data set is described in detail in (7,8).  In order to 

support a household chain-based model, a significant effort was made to clean the data, to 

identify trip chains, to identify and classify joint trips and serve passenger tours, and to attach 

level of service information not included in the TTS database.  Only major modes (including 

drive, transit all-way, walk, passenger, and rideshare) were retained.  Notably, inter-household 

carpooling is not included within this model. 

For model estimation purposes, a sample of households was drawn randomly from the 

processed TTS dataset.  Only trips that conformed to all choice set rules were used for model 

estimation.  If a trip violated the choice set rules, the entire household was removed from the 

estimation dataset.  Table 1 shows a summary of the total sample and the estimation subsample. 

 

PARAMETER ESTIMATION 

 

Calculating the Log-Likelihood 

Model parameter values were estimated by maximizing the log-likelihood function 

shown in Equation 2.  Because of the non-standard trip chain “nesting” structure shown in Figure 
2, and the complexities of vehicle allocation, ridesharing and serving passengers, no analytical 

expression could be found for the choice probability P.  Thus, P is simulated through a Monte 

Carlo process in which N sets of random utilities U are drawn for each trip for each person for 

each chain for a given β, Equation 4 is evaluated for each draw, and the frequency with which 

m* is predicted to be chosen is accumulated.  In order to account for the possibility that m* is 

never chosen within the N draws, P is defined as shown in Equation 9 (9): 
 

P(m*,t,p|β) = [F(m*,t,p|β) + 1] / [N + nt]      (9) 

 
where: 

 

F(m*,t,p|β)=  the number of times m* was selected for trip t out of the N draws, and nt is the 
number of feasible modes for trip t.   



Roorda, Miller and Kruchten 10 

TABLE 1 1996 TTS Total Sample & Estimation Sub-Sample Summary 

 
TTS Total 
Households 
(Raw) 

TTS Processed 
Households 
with major 
modes only 

Initial 
Estimation Set 

Final Estimation 
Seta 

Households 88898  45565  4465  4049  

Persons 243286  117404  11446  7154b  

Trip Chains N/A  100706  9073  8603  

Trips 500313  229178  20442  19335  

Drivec 311502d 62.3% 139819 61.0% 12199 59.7% 11702 60.5% 

Transit All-way 59760 11.9% 35846 15.6% 3297 16.1% 3118 16.1% 

Walk 29250 5.8% 16128 7.0% 1395 6.8% 1299 6.7% 

Passenger (drop-off / pickup) 78768e 15.7% 8012 3.5% 650 3.2% 399 2.1% 

Rideshare (to joint activities) N/A  29373 12.8% 2901 14.2% 2817 14.6% 

Drive Access Subway 863 0.2% 0 0.0% 0 0.0% 0 0.0% 

Drive Egress Subway 798 0.2% 0 0.0% 0 0.0% 0 0.0% 

Drive Access Commuter Rail 1241 0.2% 0 0.0% 0 0.0% 0 0.0% 

Drive Egress Commuter Rail 1161 0.2% 0 0.0% 0 0.0% 0 0.0% 

Non-drive Commuter Railf 2216 0.4% 0 0.0% 0 0.0% 0 0.0% 

Taxi 2386 0.5% 0 0.0% 0 0.0% 0 0.0% 

School bus 7684 1.5% 0 0.0% 0 0.0% 0 0.0% 

Bicycle 3891 0.8% 0 0.0% 0 0.0% 0 0.0% 

Other/Unknown 793 0.2% 0 0.0% 0 0.0% 0 0.0% 
(a) Trips by modelled modes complying with all choice set rules. 
(b) Only includes persons making a trip.  Other columns include all persons in the household. 
(c) Drive includes motorcycle trips. 
(d) In the raw TTS data, rideshare to joint activities is not identified as a separate mode. Rideshare drivers are 

included in this number. 
(e) In the raw TTS data, rideshare to joint activities is not identified as a separate mode.  Rideshare passengers are 

included in this number 
(f) “Non-drive Commuter Rail” indicates transit, walk, auto passenger and taxi commuter rail station access modes. 

 

Genetic Algorithm for Maximum Likelihood Parameter Estimation 

The search for a parameter set that resulted in the maximization of the log-likelihood 

function was done using a genetic algorithm (GA).  Simply put, genetic algorithms are a method 
of searching multi-dimensional space according to some criteria (10).  The method is based on an 

analogy to the evolutionary process in nature, in which populations of organisms adapt and 

change over time through processes of selection, reproduction, and mutation.  Those organisms 

with the genetic makeup that is most well adapted to the environment are most likely to survive 

and reproduce, resulting in a population that is increasingly “fit”.   

As applied to the problem of mode choice parameter estimation, the genetic algorithm 
analogy is developed as follows.  Each vector of parameters β is considered a chromosome, and 

each individual parameter within that vector is a gene within that chromosome.  The fitness of 

the chromosome is the value of the log-likelihood function in Equation 2, thus, the chromosome 

with the highest fitness is the maximum likelihood parameter set.   

The GA begins by initializing a population of chromosomes, that is, a group of feasible 
parameter sets (β).  This initial population forms the first generation of the evolutionary process.  

The fitness (L(β)) of each of those chromosomes is then evaluated.  Based on the fitness of each 

of the chromosomes in the population, a process of selection takes place in which chromosomes 
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with higher fitness survive and unfit chromosomes are discarded.  Reproduction involves the 

selection and the mixing of the genes of two parent chromosomes (parameter sets that have 

survived the selection process) to result in child chromosomes.  The process of reproduction 

involves both recombination, the mixing of genetic information from the two parents, and 
mutation, the introduction of slight modifications to individual genes in the chromosome.  The 

next generation is then built using an assembly step, in which a subset of the parent and child 
populations are chosen through the process of selection. This evolutionary process repeats itself 

over many generations, and the overall fitness of the population improves in each generation. 

The design of a GA for a particular application involves the choice of methods for each 

of the processes as described above.  Significant testing was undertaken to find a combination of 
methods that was feasible given our computing resources, converged reasonably quickly to a 

solution, and was able to find the maximum likelihood parameter set with a good degree of 
consistency.  Table 2 shows the GA methods chosen based on these tests.  While this GA 

configuration is not necessarily optimal, it was sufficient to solve the maximum likelihood 

parameters for our mode choice application with reasonable efficiency.  The choice of an 

appropriate population size was a critical decision because it directly influenced the computing 

resources required and the speed of convergence.  This setting (as well as the other settings) were 

tested by applying the genetic algorithm multiple times with different random number streams.  

To obtain stable estimation results we found that it was necessary to use a population size of 

approximately twice the number of parameters to be estimated.  However, further increasing the 

population size achieved limited benefits in the consistency of the solution.  Hence, for most 

model runs, a population size of 50 was used, however, in the final set of model runs the 

population size was increased to 70. 

 
TABLE 2 Genetic Algorithm Methods and Settings 

Genetic Algorithm 
Element 

Chosen Method or 
Setting 

Description 

Population size 70  

Initial population Random selection Genes for each chromosome in the initial population are 
randomly generated within the defined search space. 

Selection (for 
assembly) 

Best Selector Selects chromosomes with the highest fitness. 

Selection (for 
recombination) 

Rank-based Selector Chromosomes are ranked in order of fitness.  
Chromosome a is selected with probability defined by: 
P[a] = (popsize-rank(a))/(popsize). 

Assembly Crowding Assembler Pools the parent and child chromosomes and selects 
those with the highest fitness (Best Selector) 

Recombination Real Multi- 
Crossover 

Parents are chosen using the Rank-based selector. Each 
of the genes of the child is set to the value of that gene 
in one or the other of the parents, with equal probability. 

Mutation Percentage Gene 
Mutator 

All parameters were mutated within a range of +/- 7% 

Stopping Criterion No. of  generations 
with no increase in 
max likelihood 

15 
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The GALAPAGOS software (11,12) was used to apply the genetic algorithm to the 

problem of mode choice parameter estimation.  GALAPAGOS is built upon the LIGHTGRID 

grid-computing engine, which allows calculations to be run in a distributed computing 
environment.  Given that an available grid of computers is linked to a common network, 

LIGHTGRID manages the process of setting up client computers and dispatching computing 
tasks to those clients.  By parallelizing the computing using GALAPAGOS and LIGHTGRID, 

the speed with which a model could be estimated was dramatically improved.  As noted by 

Kruchten (11), the optimal usage of the client computers could be made when: 

 
Population size / number of client computers = integer value            (10) 

  
The minimum model run time was therefore obtained by allowing the number of client 

computers to match the population size.  This was feasible for this project, because a large 

networked computing grid of moderately powerful 1.4 GHz single-processor desktop machines 

was available for use during off-hours.  Time to convergence for the model runs ranged from 1.5 

to 2.5 hours using the distributed computing environment. 

 

MODEL RESULTS 

Table 3 presents parameter estimates, likelihood ratio tests for these parameters, and 

goodness-of-fit statistics for the model.  Table 4 shows statistics for the explanatory variables. 

The following results are notable from Table 3: 

 

• All parameters have expected signs. 

• Given the parameter estimation procedure used, asymptotic t-statistics cannot be readily 

computed.  Instead, likelihood ratio tests were performed for each parameter by deleting the 

parameter and re-estimating the model.  Using that test, all parameters are strongly significant.  

One of the least significant variables was that of travelcost.  We note that the coefficient for this 

parameter showed some variability between model runs, yet it was retained as a key policy 

variable. 

• All parameters are of plausible magnitude.  However, the travelcost parameter, which, 

combined with the parameter values for atime and tivtt, implies values of time of $69/hr for auto 

users and $27/hr for transit users.  These values of time are somewhat higher than expected.   
• The mode choice model fits the data very well and produces a fairly high overall 

goodness of fit (an adjusted ρ2 of 0.710). 

• An important concern in simulated log-likelihood calculations is the possibility that an 

observed mode for a given observation is never chosen within the Monte Carlo simulation.  In 
this analysis, 100 random draws were generated per trip.  As shown in Table 3, 166 of the 19,335 

trips (0.86%) did not have the observed chosen mode selected at least once during the 
simulation.  While ideally this number should be driven to zero as the estimation proceeds, such 

a small number of “never chosen” trips is not likely to be having a large impact on the model 

estimation results. 

• Of the 166 trips never correctly predicted, 72 were auto passenger trips, comprising 18% 
of total auto passenger trips.  For other modes, less than 2% of total trips were never correctly 

chosen.  A manual review of the base data for these trips uncovered no obvious reason to explain 

why they were not chosen.  However, this result indicates that passenger mode is clearly the 
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most difficult mode of transport to predict correctly.  This is not surprising, because the 

passenger mode (for drop-offs and pickups), involves a negotiation among household members 

for which we only have a limited understanding.  Furthermore, it impacts not only the trip 

attributes of the driver and passenger but also the activity schedule of the driver (a drop-off 
activity is added). 

 
TABLE 3 Model Estimation Results 

Parameter Description 
Coeff-

icient 

Lik. 

Ratio 

c-tr_n_dr Mode specific constant for transit all-way -0.166 18.46 

c-walk Mode specific constant for walk -0.304 28.96 

c-ridesh Mode specific constant for rideshare (for joint trips) 0.835 72.40 

c-pass Mode specific constant for auto passenger  -2.385 527.0 

atime Auto in-vehicle travel time (min) -0.075 167.2 

tivtt Transit in-vehicle travel time (min) -0.029 94.7 

twalk Walk travel time including walk access to/from transit (min)  -0.064 1263.5 

twait Transit wait time (min) -0.145 267.8 

travelcost Travel cost ($1996 Canadian) -0.065 28.7 

pkcost Parking cost ($1996 Canadian) -0.302 314.2 

dpurp_shop_d =1 if trip purpose = shopping (drive mode); = 0 otherwise 0.993 174.0 

dpurp_sch_d =1 if trip purpose = school (drive mode); = 0 otherwise -1.181 302.1 

dpurp_oth_d =1 if trip purpose = other (drive mode); = 0 otherwise 0.593 116.7 

dest_pd1_w =1 for walk trips destined for downtown Toronto; = 0 otherwise 0.897 114.3 

intrazonal_t =1 for an intrazonal trip for transit all-way mode; = 0 otherwise -2.962 299.9 

adjzone_t =1 for an adjacent zone for transit all-way mode; = 0 otherwise -1.016 142.2 

age11_15_p =1 if age 11-15 (passenger mode); =0 otherwise 0.954 61.3 

Etrip_par Scaled variance for the trip specific error term 1  

Num Observations 19335 

Num Parameters 17 

Log Likelihood L(β) -5035.87 

Log Likelihood No Parameters L(0) -17434.8 

-2[L(0)-L(β)] 24797.8 

rho2 0.7112 

Adjusted rho2 0.7102 

Number of Observations in which observed mode never chosen 166 

 
TABLE 4 Mean, Standard Deviation of Explanatory Variables in Final Estimation Dataset 

Variable Average Std.Dev.  Variable Average Std.Dev. 

atime 12.3 11.3  dpurp_shop_d 0.174 0.379 

tivtt 25.0 21.7  dpurp_sch_d 0.088 0.284 

twalk 21.9 21.4  dpurp_oth_d 0.243 0.429 

twait 7.4 5.0  dest_pd1_w 0.077 0.267 

travelcost 1.6 1.5  intrazonal_t 0.075 0.263 

pkcost 0.76 1.97  adjzone_t 0.033 0.180 
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Tables 5, 6 and 7 present prediction-success tables for the model.  Again, the good fit of 

the model is indicated in these tables, with over 88% of observed modes being chosen on 

average.  In addition, each mode except for the passenger mode is well predicted with prediction 

success rates in the order of 95%, 74% and 67%, and 99% for the auto-drive, transit, walk, and 
rideshare modes, respectively.  For these modes, relatively little “confusion” exists within the 

model, with off-diagonal elements being generally small and “well balanced” (approximately as 
many transit trips are incorrectly assigned to walk as walk trips are assigned to transit, and so 

on).  However, the prediction success rate of passenger trips is a relatively low value of 21%.  

Attempts were made to improve this result by including additional model parameters (for 

example, destination purpose, and additional dummy variables for different age categories, and 
sex).  All of these additional variables were found to be insignificant.   

 

TABLE 5 Prediction Success Table for the Estimated Model (Trips) 
 Predicted Mode 

Observed 
Mode 

Drive Transit Walk Rideshare Passenger 
Total 

Drive 11054 448 139 0 59 11699 
Transit 487 2313 216 28 73 3117 
Walk 122 252 863 2 60 1299 
Rideshare 0 0 3 2814 14 2831 
Passenger 109 125 70 0 81 385 

Total 11771 3139 1291 2844 287 19331 

 
TABLE 6 Prediction Success Table for the Estimated Model (% of Total Trips) 
 Predicted Mode 

Observed 
Mode 

Drive Transit Walk Rideshare Passenger 
Total 

Drive 57.2% 2.3% 0.7% 0.0% 0.3% 60.5% 
Transit 2.5% 12.0% 1.1% 0.1% 0.4% 16.1% 
Walk 0.6% 1.3% 4.5% 0.0% 0.3% 6.7% 
Rideshare 0.0% 0.0% 0.0% 14.6% 0.1% 14.6% 
Passenger 0.6% 0.6% 0.4% 0.0% 0.4% 2.0% 

Total 60.9% 16.2% 6.7% 14.7% 1.5% 100.0% 

 
TABLE 7 Prediction Success Table for the Estimated Model (% of Observed Mode) 
 Predicted Mode 

Observed 
Mode 

Drive Transit Walk Rideshare Passenger 
Total 

Drive 94.5% 3.8% 1.2% 0.0% 0.5% 100.0% 
Transit 15.6% 74.2% 6.9% 0.9% 2.3% 100.0% 
Walk 9.4% 19.4% 66.5% 0.2% 4.6% 100.0% 
Rideshare 0.0% 0.0% 0.1% 99.4% 0.5% 100.0% 
Passenger 28.3% 32.5% 18.1% 0.0% 21.0% 100.0% 

Total 60.9% 16.2% 6.7% 14.7% 1.5% 100.0% 

 

It is also noted in Table 6 that the aggregate predicted mode shares for the auto-drive, 

transit, walk and rideshare modes very closely match the observed mode shares.  However, the 
total predicted mode share for the passenger mode was found to be 75% of the observed mode 
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share.  Unlike a conventional logit model estimation procedure, for example, in which predicted 

and observed mode shares are forced to match through the selection of the alternative-specific 

parameter values, no such constraint is imposed within this model’s estimation.  Thus, the ability 

to reproduce the observed shares for all but one of the modes is a reasonably strong test of the 
model’s overall performance. 

 

CONCLUSIONS 

The household tour-based mode choice model developed for the Greater Toronto Area is 

a significant improvement on the existing models used in practice in that it incorporates 

household level interactions explicitly, including vehicle allocation within the household, joint 
travel decisions, and negotiations over ridesharing in the household.  All of the decisions are 

modelled within a clear theoretical framework of household random utility maximization.  It is 
also demonstrated that the maximum likelihood parameters of this model can be estimated using 

a Monte Carlo simulation technique for computation of the log likelihood, and that a genetic 

algorithm in a distributed computing environment can be successfully used for efficient search of 

parameter space with acceptable model run times. 
 
REFERENCES 

1.   Bradley, M., M. L. Outwater, N. Jonnalagadda, and E.R. Ruiter. Estimation of Activity-
Based Microsimulation Model for San Francisco.  In Proceedings of the 80

th
 Annual Meeting of 

the Transportation Research Board, CD-ROM. Transportation Research Board, National 
Research Council, Washington D.C., 2001. 
 
2. Jonnalagadda, N., J. Freedman, W.A. Davidson, and J.D. Hunt. Development of 
Microsimulation Activity-Based Model for San Francisco: Destination and Mode Choice 
Models.  In Transportation Research Record:  Journal of the Transportation Research Board, 

No. 1777, TRB, National Research Council, Washington D.C., 2001, pp. 25-35. 
 
3. Algers, S., A.J. Daly, and S. Widlert.  Modelling Travel Behaviour to Support Policy 
Making in Stockholm, In Understanding Travel Behaviour in an Era of Change (P. Stopher and 
M. Lee-Gosselin, eds.), Pergamon, Oxford, 1997. 
 
4 Beser, M. and S. Algers. SAMPERS - The New Swedish National Travel Demand 
Forecasting Tool.  In National Transport Models: Recent Developments and Prospects (L. 
Lundqvist and L-G. Mattsson, eds.), Springer, Stockholm. 2002. 
 
5. Lerman, S.R., and C. Manski. On the Use of Simulated Frequencies to Approximate 
Choice Probabilities. In Structural Analysis of Discrete Data and Econometric Applications 
(C.F. Manski and D. McFadden, eds), MIT Press, Cambridge, MA, 1981, pp. 305-319. 
 
6. Miller, E.J., M.J. Roorda, and J.A. Carrasco.  A Tour-Based Model of Travel Mode 
Choice,  Transportation, Vol. 32, No. 4, 2005, pp. 399-422. 
 
7. Data Management Group.  Transportation Tomorrow Survey 1996:  Data Validation.  
Joint Program in Transportation, University of Toronto, Toronto, 1996. 
 



Roorda, Miller and Kruchten 16 

8. Data Management Group.  TTS Version 3:  Data Guide.  Joint Program in Transportation, 
University of Toronto, Toronto, 1997. 
 
9. Ortúzar, J. de D., and L. Willumsen. Modelling Transport. Wiley, Chichester, NY, 2001. 
 
10. Back, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, 

Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York, 1996. 
 
11. Kruchten, N.  Galapagos:  A Distributed Parallel Evolutionary Algorithm Development 

Platform.  Bachelor’s Thesis, University of Toronto, 2003. 
 
12. Abdulhai, B., N. Kruchten, D. de Koning, and L. Kattan.  Galapagos: Development 
Platform for Distributed Parallel Genetic Algorithms for Computationally Demanding ITS 
Optimization Problems.  In Proceedings of the 85

th
 Annual Meeting of the Transportation 

Research Board, CD-ROM. Transportation Research Board, National Research Council, 
Washington D.C., 2005. 


